A bacteria culture starts with 1,000 bacteria and doubles in size every 3 hours. Find an exponential model for the size of the culture as a function of time t in hours.

Solution: Use the formula $y=A b^{t}$ (example 4 on p. 636 is similar). The starting amount of bacteria is 1000 , so $A=1000$. To find b, plug in 3 for t and 2000 for y (since the population doubles in 3 hours): $2000=1000 b^{3}$, divide both sides by 1000 to get $2=b^{3}$. Raise both sides to the $1 / 3$ power to get

$$
2^{1 / 3}=\left(b^{3}\right)^{1 / 3}, \text { so } b=2^{1 / 3} .
$$

Thus, the function is $y=1000\left(2^{1 / 3}\right)^{t}$, or

$$
y=1000\left(2^{t / 3}\right)
$$

Use the model to predict how many bacteria there will be after 2 days.

Solution: Time t is measured in hours in this problem, and 2 days is 48 hours. So, plug in 48 for t :

$$
y=1000\left(2^{48 / 3}\right)=1000\left(2^{16}\right)=65,536,000 .
$$

There will be about $65,536,000$ bacteria after 2 days.

