Supply and Demand Examples

1) Sales figures show that your company sold 1960 pen sets each week when they were priced at $\$ 1 /$ pen set, and 1800 pen sets each week when they were priced at $\$ 5 /$ pen set. What is the linear demand function for your pen sets?

Solution: Recall that a linear demand function has the form $q=m p+b$. We need to find m and b. We are given two values for p and two values for q. This gives two points in the form (p, q), where $\left(p_{1}, q_{1}\right)=(1,1960)$ and $\left(p_{2}, q_{2}\right)=(5,1800)$. We can find the slope m using the formula

$$
m=\frac{q_{2}-q_{1}}{p_{2}-p_{1}}=\frac{1800-1960}{5-1}=-40
$$

Now we have $q=-40 p+b$. We can use this to find b (the q-intercept), by choosing one of the given points, plugging in the values for p and q, and solving for b :

$$
1960=-40(1)+b
$$

Solving gives $b=2000$. Thus, the linear demand equation is

$$
q=-40 p+2000
$$

Note that the slope $m=-40$ can be written as $m=\frac{-40}{1}$, which is the change in q over the change in p. This can be interpreted to mean that for every $\$ 1$ increase in the price of a pen set, we can expect that sales will decrease by 40.
2) The following table shows worldwide sales of Nokia cell phones and their average wholesale prices in 2004.

Quarter	Second	Fourth
Wholesale Price (\$)	111	105
Sales (millions)	45.4	51.4

a) Use the data to obtain a linear demand function for (Nokia) cell phones, and use your demand equation to predict sales if Nokia lowered the price further to $\$ 103$.
b) Fill in the blanks: For every \qquad increase in price, sales of cell phones decrease by
\qquad units.

Solution for (a): Here the quantity q is the number of sales. We want to find a linear demand function, which has the form $q=m p+b$. We can find m by finding the slope of the line between the points $\left(p_{1}, q_{1}\right)=(111,45.4)$ and $\left(p_{2}, q_{2}\right)=(105,51.4)$:

$$
m=\frac{51.4-45.4}{105-111}=-1
$$

This means that $q=-p+b$. We can now use one of the points to find b :

$$
45.4=-111+b
$$

This gives $b=156.4$, so the linear demand equation is

$$
q=-p+156.4
$$

We can now use this equation to predict what the sales would be if the price were lowered to $\$ 103$, by plugging in $p=103$ into the demand equation:

$$
q=-103+156.4=53.4
$$

Taking units into account from the table, this means that if the price were lowered to $\$ 103$, we could expect sales of about 53.4 million phones. This is of course consistent with the Law of Demand which states that lower prices lead to higher demand.

Solution for (b): The slope can be written as $m=\frac{-1}{1}$, which is the change in q over the change is p. Considering that sales are given in millions on the table, this can be interpreted to mean that for each increase of $\$ 1$ in the price of a phone, we can expect sales to decrease by 1 million phones.
3) You can sell 90 pet chias per week if they are marked at $\$ 1$ each, but only 30 each week if they are marked at $\$ 2$ per chia. Your chia supplier is prepared to sell you 20 chias each week if they are marked at \$1/chia, and 100 each week if they are marked at $\$ 2$ per chia.
a) Write down the associated linear demand and supply functions.
b) At what price should the chias be marked so that there is neither a surplus nor a shortage of chias?

Solution for (a): We need to find both the supply and demand equations. Both have the same form, $q=m p+b$, but the slope on the demand equation is negative while the slope on the supply equation is positive. To find the demand equation, we use the two price/quantity pairs $(1,90)$ and $(2,30)$. We can find m using the usual equation:

$$
m=\frac{q_{2}-q_{1}}{p_{2}-p_{1}}=\frac{30-90}{2-1}=-60
$$

This means $q=-60 p+b$. We can find b by choosing one of the two price/quantity pairs, plugging them into the demand equation, and solving for b :

$$
90=-60(1)+b
$$

Solving gives $b=150$. Thus the demand equation is $q=-60 p+150$.

We can find the supply equation in the same way - first finding the slope and then the q-intercept. Here we use the price quantity pairs $(1,20)$ and $(2,100)$. We find m in the usual way:

$$
m=\frac{q_{2}-q_{1}}{p_{2}-p_{1}}=\frac{100-20}{2-1}=80
$$

This means $q=80 p+b$. We can find b by choosing one of the two price/quantity pairs for supply, plugging them into the supply equation, and solving for b :

$$
20=80(1)+b
$$

Solving gives $b=-60$. Thus the supply equation is $q=80 p-60$.
Solution for (b): To find the equilibrium price, we set supply equal to demand and then solve for p :

$$
-60 p+150=80 p-60
$$

Solving for p gives $p=1.5$. Thus the equilibrium price is $\$ 1.50$ per chia. If they are sold for this price, there will be neither a surplus nor a shortage.

