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Regiomontanus and Trigonometry 

 
 The material presented in this teaching module is appropriate for an advanced 

high school or college trigonometry course. 

 
 

1 The Early Years 

 

 The development of what we now call trigonometry is historically very closely 

linked to astronomy.  From the time of the ancient Greeks and through the Middle Ages 

astronomers used trigonometric ratios to calculate the positions of stars, planets and other 

heavenly bodies.  It is for this reason that most of the people we associate with the 

development of trigonometry were astronomers as well as mathematicians.   

 The foundations of modern trigonometry were laid sometime before 300 B.C.E., 

when the Babylonians divided the circle into 360 degrees.  Within the next few centuries 

the Greeks adopted this measure of the circle, along with the further divisions of the 

circle into minutes and seconds.  While attempting to explain the motions the planets, 

early astronomers found it necessary to solve for unknown sides and angles of triangles.  

The Greek astronomer Hipparchus (190-120 B.C.E) began a list of trigonometric ratios to 

aid in this endeavor.  Hipparchus was also able to derive a half-angle formula for the sine 

[1].  

 The most influential book on ancient astronomy was the Mathematiki Syntaxis 

(Mathematical Collection), otherwise known as The Almagest, by Claudius Ptolemy (c. 

100-178 C.E.).  This masterwork contains a complete description of the Greek model of 

the universe, and is considered by many to be the culmination of Greek astronomy [1].   

It is interesting to note that The Almagest is the only completely comprehensive work on 

Greek astronomy to survive to the modern era.  It contains 13 books dealing with 

everything from general assumptions of the science of the day, such as the size of the 

earth relative to the sphere of fixed stars, to the study of chords of a circle and the 

motions of the moon and all of planets known at the time.  Only in part of book I of The 

Almagest does Ptolemy deal exclusively with what we would today consider to be 

trigonometry [3].  Section 10 of book I is called On the Size of Chords in a Circle, and in 

it is contained a famous table of chords, which today can be viewed as a table of sines for 

every angle up to 90º in quarter degree intervals [5].   

 Ptolemy’s contribution to modern science and mathematics cannot be overstated, 

and in fact it wasn’t until the 16
th

 century that some of Ptolemy’s ideas, such as the 

earth’s position at the center of the universe, began to be questioned by the scientific 

community.  His table of chords was used widely across Europe for hundreds of years 

without much improvement, until a man named Johannes Müller (Regiomontanus) 

published his tabula fecunda (fruitful table) in 1467 [2, intro.].  
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2 Along Comes Regiomontanus 

 

 Until the middle of the 15
th

 century, works that contained methods in 

trigonometry were very closely tied to its practical use in astronomy.  Around 1463 

however, the first text dealing solely with trigonometry and triangles, called 

(appropriately enough) De Triangulis Omnimodis (On Triangles of Every Kind, or just 

On Triangles), was written by the astronomer Johannes Müller (1436-1476), otherwise 

known as Regiomontanus.   

 Regiomontanus was born on June 6
th

, 1436 in the town of Königsberg, Germany.  

His father was probably a miller, fairly well off, at least enough so to afford to send his 

son to Leipzig and Vienna to attend university.  The young Regiomontanus showed 

extraordinary ability in both mathematics and astronomy at an early age, and by 12 was 

already enrolled in university at Leipzig, having found little challenge in the schools of 

his hometown of Königsberg.  Also at the age of 12 (in 1448), Regiomontanus had 

calculated the positions of the planets for every day of the year, to a greater degree of 

accuracy than the Gutenberg calendar, which was first printed in the same year [4].   

 In 1450, Regiomontanus enrolled in the university in Vienna, which had a special 

reputation for its mathematics program.  He received his baccalaureate in 1452, and 

master’s in 1457.  That same year he was named to the faculty of the university in 

Vienna.  He stayed on as faculty until the death of his mentor, George Peuerbach, in 

1461.  He went to Italy, and it was in Venice in 1464 that he completed On Triangles.  

Regiomontanus was somewhat of a rare book aficionado, and during his stay in Italy he 

amassed quite a collection of rare works, either by copying them or buying them outright.  

Later in his life, he would become an avid publisher of, among other things, the works of 

ancient Greeks.   

 In the summer of 1467, after several years of traveling in Italy, Regiomontanus 

accepted the invitation of King Mathias of Hungary to become the librarian of the new 

Royal Library in Budapest.  He was very well received there, partly because he was able 

to “foresee,” using astrology, that the king would soon recover from a serious illness 

(which he did).  Regiomontanus stayed in Hungary for the next four years, making 

astronomical observations and observational equipment for the king and the archbishop.  

Also during this time, Regiomontanus criticized a translation of The Almagest (among 

other things) done by George Trebizond, an act that would eventually cost him his life 

[2,4]. 

 In 1471, Regiomontanus left Hungary for Nürnberg, a city which he had a 

particular affinity for.  It was close to his hometown, and had become a center for 

academic activity.  It was here that he did the majority of his publishing work.  In his 

Index, he listed 41 various books on mathematics and astronomy that he intended to 

publish during his lifetime.  He wasn’t able to publish them all, and in 1475 the reigning 

Pope, Sixtus IV, summoned him to Rome to revise the Julian Calendar.  He went 

reluctantly, and within a year he had died, poisoned by the sons of Trebizond [2].   

 Regiomontanus was highly praised in death, and in life was known as a genius of 

his time, a great astronomer and mathematician, and one who enjoyed bringing 

knowledge to the masses.   
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3 Regiomontanus on Triangles 

 

 In his book On Triangles, Regiomontanus collects the works of astronomers and 

mathematicians of previous eras (most notably Ptolemy) into one work on trigonometry.  

He provides clear examples and clarification when necessary, and in some cases 

improves on the methods of the ancients.  He often cites Euclid’s The Elements, and uses 

the axioms of that work extensively in his own.   

 In Theorem 20 of Book I, Regiomontanus states  

 

In every right triangle, one of whose acute vertices becomes the center 

of a circle and whose hypotenuse its radius, the side subtending this 

acute angle is the right sine
*
 of the arc adjacent to that side and 

opposite the given angle, and the third side of the triangle is equal to 

the sine of the complement of the arc.   

 

Let’s examine this statement a little closer by following along with Regiomontanus’ 

description of the theorem: 

 

If a right ∆ ABC is given with C the right angle and A an acute angle, 

around the vertex of which a circle BED is described with the 

hypotenuse – that is, the side opposite the largest angle – as radius, and 

if side AC is extended sufficiently to meet the circumference of the 

circle at point E, then side BC opposite  BAC is the sine of arc BE 

subtending the given angle, and furthermore the third side AC is equal 

to the right sine of the complement of arc BE. 

 

(a) Using Regiomontanus’ description and figure 1 below (a drawing very similar to this 

one was used by Regiomontanus in On Triangles), label the sine of arc BE (this could 

also be considered to be the sine of  A).  What is the complement of arc BE?  Label it, 

and label the (right) sine of the complement of arc BE.  What do you think the modern 

term for the sine of the complement of BE might be? 

 

                                                 
*
 The term “right sine” is used to distinguish the sine from another part of the circle 

called the versed sine, which is no longer used (in figure 1, the versed sine is line 

segment EC).  From here on, “right sine” and “sine” can be used interchangeably. 
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Figure 1. 

 

 

 Note that Regiomontanus refers to the sine of the arc BE rather than to the sine of 

 A.  These two can be used interchangeably knowing that the length of the arc opposite 

an angle is equal to the product of the radius and the angle in radians.  In modern 

trigonometry textbooks the sine function is called a circular function when it takes an arc 

length as an argument.  Also note that in the above description, no mention is made of the 

length of side AB (the hypotenuse) of  ABC, which is also the radius of the circle.  In 

modern trigonometry textbooks, we might see a geometric interpretation of the sine of an 

angle  with a diagram similar to figure 1.  In such a diagram, the sine of  A would still 

be BC, only with the added condition that BA=1.  Really the sine of an angle of a right 

triangle is the ratio of the length of the side opposite the angle to the hypotenuse of the 

triangle, so if the length of the hypotenuse is 1, then the sine of an angle is just the length 

of the side opposite the angle.  Regiomontanus does not use this convention.  In On 

Triangles, he uses a circle with radius 60,000 to formulate his table of sines (later, he 

actually made tables for which the radius of the circle was 6,000,000 and eventually 
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100,000,000) [6].  Figure 2 shows a simplified version of one of Regiomontanus’ sine 

tables [2, derived].  Notice that the sine of 90º is 60,000.  The sine of 90º is also called the 

whole sine, and it is the same as the radius of the circle.  

 

Angle 
(degrees)  Sine Angle Sine Angle Sine 

1 1047 31 30902 61 52477 

2 2094 32 31795 62 52977 

3 3140 33 32678 63 53460 

4 4185 34 33552 64 53928 

5 5229 35 34415 65 54378 

6 6272 36 35267 66 54813 

7 7312 37 36109 67 55230 

8 8350 38 36940 68 55631 

9 9386 39 37759 69 56015 

10 10419 40 38567 70 56382 

11 11449 41 39364 71 56731 

12 12475 42 40148 72 57063 

13 13497 43 40920 73 57378 

14 14515 44 41680 74 57676 

15 15529 45 42426 75 57956 

16 16538 46 43160 76 58218 

17 17542 47 43881 77 58462 

18 18541 48 44589 78 58689 

19 19534 49 45283 79 58898 

20 20521 50 45963 80 59088 

21 21502 51 46629 81 59261 

22 22476 52 47281 82 59416 

23 23444 53 47918 83 59553 

24 24404 54 48541 84 59671 

25 25357 55 49149 85 59772 

26 26302 56 49742 86 59854 

27 27239 57 50320 87 59918 

28 28168 58 50883 88 59963 

29 29089 59 51430 89 59991 

30 30000 60 51962 90 60000 
 

Figure 2. 

 

(b) Compare some of the sines of the angles in figure 2 with modern values for the sines 

of those angles.  How could we use Regiomontanus’ table to arrive at the modern value 

for the sine of an (integer) angle?   
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 To get a better idea of what a sine table is and where it comes from, let’s compare 

the sine of a particular angle from figure 2 with the modern value of sine for that angle 

and see what’s really happening.  When we choose an angle, we can form a triangle out 

of it with one vertex on the circle and another at the center of the circle (as drawn in 

figure 1), and no matter which triangle is formed it will have a hypotenuse (whole sine) 

of 60,000 (in the case of a unit circle, the hypotenuse will be 1).  If we choose 25º, we see 

that it has a sine of 25,357.  What does this really mean?  It means that the ratio of the 

side of the triangle opposite this angle to the hypotenuse of the triangle is 
25357

60000
 .  If we 

use the unit circle, we must instead use the modern value for the sine of 25º, which 

according to the TI-89 calculator is about .42262.  In the unit circle the hypotenuse is 1, 

so the ratio of the side opposite the 25º angle to the hypotenuse is 
.42262

1
 , or just .42262.  

What is important is that the ratio is the same no matter what value we use for the whole 

sine (notice 
25357

60000
 ≈.42262).  What should be noticed here is that the triangle formed from 

a 25º angle in the unit circle is similar to the triangle formed from the 25º angle in 

Regiomontanus’ circle with radius 60,000, and in fact, similar to a triangle formed from a 

25º angle in a circle of any radius.  This is where the sine table comes in handy.  A sine 

table is based on whatever value is chosen for the whole sine.  In Regiomontanus’ table, 

for a given angle we know that a right triangle with a hypotenuse of 60,000 can be 

formed from that angle.  We will then know the ratio of the side opposite that angle to 

60,000.  If we have a right triangle with the same angle but a different hypotenuse, we 

know that this triangle will be similar to the one with a hypotenuse of 60,000, and will 

therefore have the same ratio between its sides.  This means that if we have a right 

triangle with a given angle and side, we can find the other sides by using the sine table.  

Further, if we are given two sides of a right triangle, it is possible to find all of the angles 

in the triangle using a sine table.   

 

 Let’s look at a couple of the theorems from Book I of On Triangles and see if we 

can make sense of them.  It may be helpful to refer to figure 1 while reading the 

theorems, noting that A and B are switched.  In Theorem 27, Regiomontanus states: 

 

When two sides of a right triangle are known, all the angles can be 

found. 

If one of the given sides is opposite the right angle, that is sufficient; if 

not, however, we will find it, also, by the preceding theorem, for 

without it, it will not be possible to handle the theorem. 

 

(c) What is the preceding theorem to which Regiomontanus is referring? (Keep in mind 

that he restates ancient and well-known theorems in his book). 

 

Thus if  ABC is given with C a right angle and sides AB and AC 

known, then all the angles can be found.   

When a circle is described with  B, which the given side AC 

subtends, as center and side BA as radius, then, by Theorem 20 above, 
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AC will be the sine of its adjacent arc, which is opposite the angle, 

ABC, that we seek.   

 

Regiomontanus continues with what he calls “the mechanics,” a description of how to 

find the angle ABC that we seek. 

 

The mechanics:  Take the value of the side subtending the right angle 

as the first number, and take the value of the side opposite the desired 

angle for the second number, while the value of the whole sine is the 

third number.  Then multiply the second by the third and divide the 

product by the first, for the sine of the arc opposite the desired angle 

will result. 

 

(d) Using these instructions, write an equation for the “sine of the arc opposite the desired 

angle”.  Call the arc s, the “first number” r, the “second number” y, and remember that 

the “third number”, the whole sine, is 60,000.   

 

From the table of sines you may determine that arc, whose value 

equals the desired angle.  If you subtract this angle from the value of a 

right angle, the number that remains is the second acute angle. 

 

(e) Using the table of sines in figure 2, find the two acute angles in a right triangle ABC if 

AB=20, AC=12 and BC=16.  Since the sine table only lists sines for integer angles, find 

the angle that most closely matches the value you obtain for the sine of the angle.   

  

(f) The whole sine to which Regiomontanus refers, if taken to be 1, could today be 

considered to be the radius of the unit circle.  Why do you suppose Regiomontanus used 

a value of 60,000 instead of 1 for his “unit circle”?  (Notice that there are no decimals in 

the table but each sine is listed to 4 or 5 significant figures). 

 

 

The next theorem we look at explains that if a side and an angle of a right triangle are 

given, then all of the rest of the sides and angles can be found.  As Regiomontanus 

explains in Theorem 29 of Book I: 

 

When one of the two acute angles and one side of a right triangle are 

known, all the angles and sides may be found. 

If in right  ABC with C the right angle,  B is known together with 

any one side – say, AC – then all its angles and sides may be found.   

 

Regiomontanus then goes on to give an example of how to do this: 

 

For instance, let  ABC be given as 36º and side AB as 20 feet.  

Subtract 36 from 90 to leave 54º, the size of  BAC.  Moreover, from 

the table of sines it is found that line AC is 35267 while BC is 48541, 

when AB, the whole sine, is 60000.   
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Here we can see how the similar triangles are working:  for an angle of 36º, if the 

hypotenuse is 60,000 then the side opposite the 36º angle will be 35,267.  We can now 

compare our similar triangle that has a hypotenuse of 20 to the reference triangle obtained 

from the sine table.   

 

(g) Set up a ratio based on the similar triangles described above, that involves side AC.  

Solve for side AC using this ratio.  Do the same for side BC.  Do this before continuing 

with the rest of Regiomontanus’ example.  It may be helpful to draw a picture.   

 

Regiomontanus continues: 

 

Therefore multiplying 35267 by 20 yields 705340, which, divided by 

60000, leaves about 11 
45

60
 .  Thus side AC will have 11 feet and 

45

60
 – 

that is, three-fourths of one foot.  Similarly multiply 48541 by 20, 

giving 970820, which, divided by 60000, leaves about 16 feet and 11 

min.
*
, the length of side BC. 

 

(h) We see that Regiomontanus has solved for the length of the remaining two sides.  Did 

your answer from (g) agree with his? 

 

 

4 Regiomontanus and the Law of Sines 

 

 In Book II of On Triangles, Regiomontanus introduces the law of sines in his own 

words (though it was known before his time).  In Theorem I, he states: 

 

In every rectilinear
†
 triangle the ratio of one side to another side is as 

that of the right sine of the angle opposite one of the sides to the right 

sine of the angle opposite the other side.   

As we said elsewhere, the sine of an angle is the sine of the arc 

subtending that angle.  Moreover, these sines must be related through 

one and the same radius of the circle or through several equal radii.  

Thus, if  ABG is a rectilinear triangle, then the ratio of side AB to side 

AG is as that of the sine of  AGB to the sine of  ABG; similarly, 

that of side AB to BG is as that of the sine of  AGB to the sine of  

BAG.   

 

                                                 
*
 In Regiomontanus’ time, the sexagesimal system was more widely used than it is today.  

In it, 11 minutes is 
11

60
 ≈.18 feet, so 16 feet and 11 minutes is about 16.18 feet.   

†
 As opposed to a spherical triangle (a triangle formed on the surface of a sphere), which 

Regiomontanus addresses later in the book. 
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(i) Write the law of sines as Regiomontanus explains it.  Check that it is equivalent to the 

law of sines as stated in a modern trigonometry textbook.   

 

In Theorem 4 of Book II, Regiomontanus states: 

 

If in any scalene triangle two angles are given individually with any 

one of its sides, the other sides are easily measured. 

If any two angles of  ABG, having three unequal sides, are given 

together with one of its sides – for example, AB – then the other two 

sides can be found.   

 

In Theorem 5, he says: 

 

When two sides of a triangle are given together with the angle opposite 

one of them, the other angles and the third side may be determined.   

If such a  ABG has two sides AB and AG known along with  ABG, 

then the other two angles and the third side may be found.    

  

Modern trigonometry textbooks explain that there are two cases when the law of sines is 

applicable to solve a triangle (that is, find all the unknown sides and angles).  When we 

know two sides of a triangle and an angle not between those sides, it is usually referred to 

as an SSA triangle

.  When we know two angles and one side, it is usually referred to as 

an ASA triangle.  Theorems 4 and 5 explain that it is possible to solve such triangles 

using the law of sines.   

 

(j) Use the sine table in figure 2 to solve the following triangle:  ABC, where AB=8, 

BC=10 and  BAC=36º.  Since the sine table is only divided into 1º increments, find the 

angle which is closest to the sine that you obtain from your calculations.  (Hint:  You may 

need to find a way to take the sine of an angle greater than 90º using the table).  Check 

your solutions with a calculator. 

 

 

5 Possibilities for Further Study 

 
 Regiomontanus never directly refers to the cosine function, but he uses it 

implicitly when he refers to the sine of the complement of an arc.  He also never refers to 

the tangent function, though Hughes states in his introduction to On Triangles, “It seems 

likely that Regiomontanus knew of the tangent function when he wrote his Triangles.  

Why he did not use it is another question.” [2].  The origins and uses of the cosine and 

tangent functions would be a possible extension to this teaching module, as well as the 

researching the later introduction of the secant, cosecant and cotangent functions, which 

were of little use to the practical minded astronomers of the 15
th

 century.   

                                                 

 Note that in this case of the law of sines (SSA) it may be possible to construct more 

than one triangle with the given information.  With the numbers given in (j), only one 

triangle is possible. 
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