Indel

In this project, we’ll look at a simplified model of genetic mutation and species evolution, and see how the language of relations can help us formalize some of the ideas.

Phylogenetics is the study of how species evolved (building the “tree of life”), largely by looking at the genetic code (DNA) of different species. The basic underlying assumption is that mutations happen with small changes in the genetic code. The difficulty is that common ancestors of current species may be extinct, and so it is hard to figure out the sequence of steps that led to current species. For our purposes, we’ll consider DNA to be strings of letters chosen from the alphabet \{A, C, G, T\}.

One relatively simple thing we can do is to measure the “distance” between two species by counting the number of basic changes needed get from the DNA string of one species to another. For the purposes of this assignment, we’ll focus on just two kinds of basic changes: insertion and deletion. An insertion is when a single letter is added to a string, and a deletion is when a single letter is removed from a string. For instance, starting with (an extremely short) string

\[p = \text{ACTGGCTA} \]

we could insert a \(G \) between the first \(C \) and the first \(T \) to get a new string

\[q = \text{ACGTGGCTA} \]

or we could remove the last \(T \) to get a new string

\[r = \text{ACTGGCA} \]

There are sophisticated algorithms to find the shortest sequence of insertions and deletions between a pair of strings. But we’ll just do some basics.

Define a relation \(\text{ins} \) on the set of strings so that \(x \text{ ins } y \) when we can obtain \(y \) from \(x \) by an insertion. Similarly, define a relation \(\text{del} \) on the set of strings so that \(u \text{ del } v \) when we can obtain \(v \) from \(u \) by a deletion. So, for instance, using the examples above, we can say \(p \text{ ins } q \) and \(p \text{ del } r \).

1. Find all the \(\text{ins} \) and \(\text{del} \) relations among the following strings. (In other words, identify all the pairs \(x \) and \(y \) among the following strings such that \(x \text{ ins } y \), and then identify all the pairs \(u \) and \(v \) among the following strings such that \(u \text{ del } v \).

\[
\begin{align*}
b &= \text{ACTCG} & d &= \text{CGCGG} \\
e &= \text{ACCTCG} & f &= \text{ACGGCG} \\
h &= \text{ACGGTG} & i &= \text{CCTGCG} \\
j &= \text{CGTGCG} & k &= \text{ACCTACG} \\
l &= \text{ACCTGCG} & m &= \text{ACGTGCG} \\
n &= \text{CACCTGCG} & o &= \text{CGACGTGCG}
\end{align*}
\]

Remember, we wanted to measure “distance” between two species (or, in our context, between two strings). A careful discussion of defining distances more generally will be too much for this assignment, but one thing to note is that it is symmetric (the distance from point A to point B is the same as the distance between point B and point A).

4. Think of a way to combine ins and del in order to make a symmetric relation, called indel. Verify this new relation is symmetric. Find all indel relations among the strings in question 1. Explain why biologists might like this relation more than ins or del.

6. A more open-ended question. Notice how we were able to take relations that were not symmetric, and from them, construct a symmetric relation. Could you do something similar with reflexivity, transitivity, or anti-symmetry, for any of ins, del, or indel? Can you think of a reason for doing this?