
A Quick Introduction to Modular Arithmetic

Art Duval
University of Texas at El Paso

November 16, 2004

1 Idea

Here are a few quick motivations for modular arithmetic:

1.1 Sorting integers

Recall how you sort all integers into “odd” and “even”. Every number is
either odd or even, but not both. This is a “partition” of the integers into
two “classes”. One way to think of this partition is that we are sorting
numbers based on whether or not they are divisible by 2.

If we replace the 2 in the odd/even definition by, say, 3, we could sort
numbers based on whether or not they are divisible by 3. It turns out to
be better (you’ll see why soon, I hope) to sort an integer based on which
remainder it leaves when it’s divided by 3. In this settting, we think of even
numbers as those whose remainder is 0 when divided by 2, and odd numbers
as those whose remainder is 1 when divided by 2. And then, when we replace
2 by 3, we’d be sorting the integers into 3 classes, those whose remainder is 0
when divided by 3, those whose remainder is 1 when divided by 3, and those
whose remainder is 2 when divided by 3.

From now on, we’ll call the number we’re dividing by the modulus, and
denote it by m. So, in the odd and even case, m = 2, and the next case we
talked about, m = 3. We can set m to be any positive integer. (If m = 1,
something funny happens. Try it!)

Whenm = 2, the integers are sorted into 2 parts, {. . . ,−4,−2, 0, 2, 4, 6, 8, . . .}
and {. . . ,−3,−1, 1, 3, 5, 7, . . .}. (Note that negative integers are included as

1



well.) Whenm = 3, the integers are sorted into 3 parts, {. . . ,−6,−3, 0, 3, 6, 9, 12, . . .},
{. . . ,−5,−2, 1, 4, 7, 10, 13, . . .}, {. . . ,−4,−1, 2, 5, 8, 11, 14, . . .}.

1.2 Remainders

Closely related to the above idea is the idea of assigning to every integer its
remainder when its divided by m. So, for instance, when m = 5, we’d assign
17 to 2, since 17 leaves a remainder of 2 when divided by m = 5. When
m = 2, every odd number would be assigned to 1, and every even number
would be assigned to 0.

What’s the difference between sorting and assigning by remainders? It
seems like the same thing, and they are very closely related. When we sort by
remainders, we think of all the integers in the same class as being related to
one another when they have the same remainder. When we assign, we think
of a function assigning to every integer its remainder. These two different
perspectives will come up again.

1.3 Last digit

A special case of assigning or sorting by remainder when dividing by m is
when m = 10. Then, the remainder when dividing a non-negative integer by
m = 10 is simply its last digit!

1.4 Clock arithmetic

A quick example looking ahead to a simple use of modular arithmetic. When
it’s 11 o’clock, and you want to know what time it will be 7 hours later, you
don’t simply add 7 to 11 to get 18 o’clock. We do start with the 18, but
then we subtract 12. More generally, if you wanted to know what time it will
be 70 hours later, you’d add 70 to 11, get 81, and keep subtracting 12’s (six
times, as it turns out) until you are left with 9, so it will be 9 o’clock (some
days later). In modular arithmetic, using notation we’ll get to soon, you are
computing 11 + 70 ≡ 9 (mod 12).

Note that here, we are using the function idea of modular arithmetic.
Also note that if you are computing on military time, just replace all the 12’s
by 24’s.

2



2 Definitions

Now let’s take some of these ideas and make them more precise.

2.1 Sorting; equivalence relation

The idea is that we want to say that a and b are “equivalent” when they
leave the same remainder upon division by m. Say this remainder is r. Then

a = ms+ r

b = mt+ r

for some integers s and t. Subtracting the second equation from the first, we
get a − b = m(s − t), which leads to what turns out to be a useful form of
the definition of this equivalence:

a ≡ b (mod m) when a− b is a multiple of m.

(The advantage of this form is that it only involves a, b,m, and does not
need to mention r.) We say “a is congruent to b mod m”. We call ≡ an
equivalence relation because it satisfies the following three rules:

• a ≡ a (mod m)

• if a ≡ b (mod m), then b ≡ a (mod m)

• if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

2.2 Remainders; binary operation

Most computer programs are like Mathematica in using “mod” as a function,
not a relation:

In[1] := Mod[81, 12]
Out[1] = 9

The output is “9” because when 81 is divided by 12, the remainder is 9.
Note that this means 81 ≡ 9 (mod 12). The difference is that, while 81 is
congruent to many numbers (mod 12), the Mod function returns only the
special number, 9, from this class that is the unique remainder when you
divide by 12.

3



3 Modular arithmetic

What makes these ideas valuable is how congruence behaves nicely with
respect to addition, subtraction, and multiplication (division is a little harder,
and beyond the scope of these notes). In short, if

a ≡ b (mod m)

c ≡ d (mod m)

then, as we’d hope,

a+ c ≡ b+ d (mod m)

a− c ≡ b− d (mod m)

a× c ≡ b× d (mod m)

Note how, in the special case m = 10, this just confirms last-digit arithmetic.
For instance, 17 ≡ 7 (mod 10) and 23 ≡ 3 (mod 10), so 17× 23 ≡ 7× 3 =
21 ≡ 1 (mod 10), which is just a fancy way of saying that the last digit of
17× 23 is 1 because the last digit of 7× 3 is 1.

We now sketch the details of why these arithmetic facts are true.

3.1 Addition

Since a ≡ b (mod m) and c ≡ d (mod m), we know that a− b and c− d are
multiples of m, so a−b = ms and c−d = mt for some integers s and t. Then

(a+ c)− (b+ d) = (a− b) + (c− d)

= ms+mt

= m(s+ t),

so a+ c ≡ b+ d (mod m), since (a+ c)− (b+ d) is a multiple of m.

3.2 Subtraction

This is entirely similar to addition, and so the details are left to you to work
out.

4



3.3 Multiplication

Since a ≡ b (mod m) and c ≡ d (mod m), we know that a− b and c− d are
multiples of m, so a− b = ms and c− d = mt for some integers s and t. We
can rewrite these two equations as a = ms+ b and c = mt+ d. Then

ac− bd = (ms+ b)(mt+ d)− bd
= (m2st+ dms+ bmt+ bd)− bd
= m(mst+ ds+ bt) + bd− bd
= m(mst+ ds+ bt),

so ac ≡ bd (mod m), since ac− bd is a multiple of m.

5


