Math 4303 Dr. Duval

FUNDAMENTALS OF MATH Closure of algebraic numbers

Tuesday, April 18

This is an outline to show that the algebraic numbers are closed under addition and multiplication.

- 1. To show algebraic numbers are closed under addition, let's warm up with an example. Let $\alpha = \sqrt[3]{2}, \beta = \sqrt{3} + 1$. We need to find an algebraic equation satisfied by $\alpha + \beta$. We'll show that $\alpha + \beta$ satisfies an algebraic equation of degree 6, without actually constructing the equation.
 - (a) We know that α is algebraic because it satisfies the algebraic equation $\alpha^3 2 = 0$. We can rewrite this equation in a way that will prove useful: $\alpha^3 = 2$. Now find the algebraic equation satisfied by β [hint: it is a degree 2 polynomial], and use it to find a nice expression for β^2 in terms of β , with only integer coefficients.
 - (b) Next write out the first 6 powers of (α+β): (α+β), (α+β)², (α+β)³, ..., (α+β)⁶. (Pascal's triangle and the binomial theorem will help.) Be sure to "reduce" your answer, using α³ = 2 and the reduction you found in step 1a for β², so that the only powers of α in your expansions are 1, α, and α², and the only powers of β in your expansions are 1 and β. Of course, you'll also get mixed terms like α²β in your expansion.
 - (c) How many different kinds of terms of the form $\alpha^i \beta^j$ (where *i* and *j* could be zero) do you get in your expansions in step 1b?
 - (d) Explain why, if a polynomial equation (of degree d) shows a number γ is algebraic, then we can think of the polynomial equation as an integer linear combination of $1, \gamma, \gamma^2, \ldots, \gamma^d$ adding up to 0.
 - (e) Use step 1c to show why we can find such a linear combination (as described in step 1d) of $1, (\alpha + \beta), (\alpha + \beta)^2, \ldots, (\alpha + \beta)^6$ adding up to 0. Here are two hints to do this, one based on Matrix Algebra, the other on Linear Algebra:
 - **Matrix Algebra:** To make this linear combination add up to 0, it is enough to show that the coefficient on each term $\alpha^i \beta^j$ is 0. Set up this problem as a system of linear equations, one equation for each term $\alpha^i \beta^j$. How many equations do you have? How many variables are you solving for?
 - **Linear Algebra:** Consider the vector space whose basis is all the different kinds of terms you found in step 1c; what is its dimension? Use step 1b to think of $1, (\alpha + \beta), (\alpha + \beta)^2, \ldots, (\alpha + \beta)^6$ as vectors in this vector space; how many of these vectors are there?
- 2. Now try to replicate this for two arbitrary algebraic numbers α and β , where α is algebraic of degree p, and β is algebraic of degree q.
 - (a) Explain why we can write any power of α in terms of $1, \alpha, \alpha^2, \ldots, \alpha^{p-1}$, and any power of β in terms of $1, \beta, \beta^2, \ldots, \beta^{q-1}$.
 - (b) When you expand $(\alpha + \beta)^i$ for i = 1, ..., pq, how many different terms of the form $\alpha^i \beta^j$ (where *i* and *j* could be zero) do you get in your expansions?
 - (c) Show why we can find a polynomial of degree pq that verifies $\alpha + \beta$ is algebraic.

- 3. Repeat the reasoning in step 2 to show why, if α is algebraic of degree p, and β is algebraic of degree q, then we can find a polynomial showing that $\alpha\beta$ is algebraic.
- 4. Final note (for those with some experience in algebra): You've completed the hard part to showing that the algebraic numbers form a field. Can you show why all that's left to do is show that if α is algebraic, then so are $-\alpha$ and $1/\alpha$? To figure out how to do this in general, try some examples:

Find the roots of $2x^2 + 4x - 3 = 0$, and call them λ and μ . Now find the polynomials that verify $-\lambda$ and $-\mu$ are algebraic (the polynomials that $-\lambda$ and $-\mu$ satisfy). Can you now guess (and then prove) how this works in general?

Similarly, find the polynomials that verify $1/\lambda$ and $1/\mu$ are algebraic. Can you now guess (and then prove) how this works in general?