1. Let V be a finite-dimensional inner product space and let $T \in \mathcal{L}(V)$ be an invertible linear operator. Prove that T^{*} is also invertible and that $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
2. Suppose n is an integer. Define $T \in \mathcal{L}\left(\mathbf{F}^{n}\right)$ by

$$
T\left(z_{1}, \ldots, z_{n}\right)=\left(0, z_{1}, z_{1}+z_{2}, z_{1}+z_{2}+z_{3}, \ldots, z_{1}+\cdots+z_{n-1}\right)
$$

Find a formula for $T^{*}\left(z_{1}, \ldots, z_{n}\right)$.
3. In \mathbf{R}^{4}, let

$$
U=\operatorname{span}((1,1,1,1),(6,1,0,-1)) .
$$

Find $u \in U$ such that $\|u-(2,0,1,9)\|$ is as small as possible.
4. Let U and W be subspaces of a finite-dimensional inner product space V, and let $P_{U}, P_{W} \in \mathcal{L}(V)$ denote the orthogonal projections of V onto U and W, respectively. Prove that if $U \subseteq W$, then

$$
P_{W} P_{U}=P_{U} P_{W}=P_{U}
$$

5. (Graduate students only) Again let U and W be subspaces of a finite-dimensional inner product space V, and let $P_{U}, P_{W} \in \mathcal{L}(V)$ denote the orthogonal projections of V onto U and W, respectively. Prove that if

$$
P_{U}+P_{W}=I
$$

then $U \cap W=\{0\}$.

