Main Exercises 2
due 2pm, Thursday, February 14

1. Prove or give a counterexample: If $v_{1}, v_{2}, \ldots, v_{k}$ is a linearly independent list of vectors in V, and $c_{1}, \ldots, c_{k} \in \mathbf{F}$ with $c_{i} \neq 0$ for all i, then

$$
c_{1} v_{1}, c_{2} v_{2}, \ldots, c_{k} v_{k}
$$

is linearly independent.
2. Let $v_{1}, v_{2}, \ldots, v_{k}$ be a list of vectors in V. Prove that

$$
\operatorname{span}\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)=\operatorname{span}\left(v_{1}+v_{2}, v_{1}-v_{2}, v_{3}, \ldots, v_{k}\right)
$$

3. Let

$$
U=\left\{(x, x, y, y, x+y) \in \mathbf{F}^{5}: x, y \in \mathbf{F}\right\} .
$$

Find a subspace W of \mathbf{F}^{5} such that $\mathbf{F}^{5}=U \oplus W$.
4. Let U and W be subspaces of V. Prove that $U \cap W$ is also a subspace of V.
5. (Graduate students only) Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be a collection of subsets in V. Prove that

$$
\bigcap_{\alpha \in \Delta} U_{\alpha}
$$

is also a subspace of V.

