Math 4326/5322 Dr. Duval

1. Prove or give a counterexample: If v_1, v_2, \ldots, v_k is a linearly independent list of vectors in V, and $c_1, \ldots, c_k \in \mathbf{F}$ with $c_i \neq 0$ for all i, then

$$c_1v_1, c_2v_2, \ldots, c_kv_k$$

is linearly independent.

2. Let v_1, v_2, \ldots, v_k be a list of vectors in V. Prove that

$$\operatorname{span}(v_1, v_2, v_3, \dots, v_k) = \operatorname{span}(v_1 + v_2, v_1 - v_2, v_3, \dots, v_k)$$

3. Let

$$U = \{ (x, x, y, y, x + y) \in \mathbf{F}^5 \colon x, y \in \mathbf{F} \}.$$

Find a subspace W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$.

- **4.** Let U and W be subspaces of V. Prove that $U \cap W$ is also a subspace of V.
- 5. (Graduate students only) Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a collection of subsets in V. Prove that

is also a subspace of V.