1. Suppose $T \in \mathcal{L}(V, W)$ is surjective, and v_{1}, \ldots, v_{n} spans V. Prove that the list $T v_{1}, \ldots, T v_{n}$ spans W.
2. Suppose $T \in \mathcal{L}(V, W)$ is injective, and $T v_{1}, \ldots, T v_{n}$ is linearly dependent in W. Prove that the list v_{1}, \ldots, v_{n} is linearly dependent in V.
3. Suppose $T \in \mathcal{L}(V, W)$, and $T v_{1}, \ldots, T v_{n}$ is linearly independent in W. Prove that the list v_{1}, \ldots, v_{n} is linearly independent in V.
4. Suppose $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$ are each injective. Prove that $S T$ is also injective.
5. Suppose U is a subspace of W, and W is a finite-dimensional vector space. Let $S \in$ $\mathcal{L}(U, V)$. Prove that there exists $T \in \mathcal{L}(W, V)$ such that $T u=S u$ for all $u \in U$.
6. (Graduate students only) Suppose v_{1}, \ldots, v_{n} is a linearly dependent list of vectors in V. Suppose that $W \neq\{0\}$. Prove that there exist $w_{1}, \ldots, w_{n} \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $T v_{i}=w_{i}$ for each $i=1, \ldots, n$.
