- **1.** Suppose $T \in \mathcal{L}(V, W)$ is surjective, and v_1, \ldots, v_n spans V. Prove that the list Tv_1, \ldots, Tv_n spans W.
- **2.** Suppose $T \in \mathcal{L}(V, W)$ is injective, and Tv_1, \ldots, Tv_n is linearly dependent in W. Prove that the list v_1, \ldots, v_n is linearly dependent in V.
- **3.** Suppose $T \in \mathcal{L}(V, W)$, and Tv_1, \ldots, Tv_n is linearly independent in W. Prove that the list v_1, \ldots, v_n is linearly independent in V.
- **4.** Suppose $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$ are each injective. Prove that ST is also injective.
- **5.** Suppose U is a subspace of W, and W is a finite-dimensional vector space. Let $S \in \mathcal{L}(U, V)$. Prove that there exists $T \in \mathcal{L}(W, V)$ such that Tu = Su for all $u \in U$.
- 6. (Graduate students only) Suppose v_1, \ldots, v_n is a linearly dependent list of vectors in V. Suppose that $W \neq \{0\}$. Prove that there exist $w_1, \ldots, w_n \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_i = w_i$ for each $i = 1, \ldots, n$.