- **1.** Let $V = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 + x_2 + x_3 = 0, x_4 + x_5 = 0\}$, and let $W = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 + x_2 + x_4 = 0, x_2 + x_3 + x_5 = 0, x_1 + x_5 = 0\}$. Find a surjective map from V to W; be sure to prove that it is surjective. Can there be an injective map from V to W?
- **2.** Let V and W be finite-dimensional vector spaces. Let U be a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null T = U if and only if dim $U \ge \dim V \dim W$.
- **3.** Let V and W be finite-dimensional vector spaces, and let $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V.
- 4. Let V and W be finite-dimensional vector spaces, and let $T \in \mathcal{L}(V, W)$. Prove that there exists a basis of V and a basis of W such that, with respect to these bases, all entries of $\mathcal{M}(T)$ are 0, except that the entries in row j, column j equal 1 for $1 \leq j \leq \dim \operatorname{range} T$.
- 5. (Graduate students only) Let V and W be finite-dimensional vector spaces, and let $T \in \mathcal{L}(V, W)$. Also let v_1, \ldots, v_m be a basis of V. Prove that there exists a basis w_1, \ldots, w_n of W such that, with respect to the bases v_1, \ldots, v_m and w_1, \ldots, w_n , all the entries in the first column of $\mathcal{M}(T)$ are 0, except that the entry in the first row and first column may equal 1.
- 6. (Graduate students only) Let V and W be finite-dimensional vector spaces, and let $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that range $T_1 \subseteq T_2$ if and only if there exists $S \in \mathcal{L}(V, V)$ such that $T_1 = T_2 S$.