1. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{F}^{5}: x_{1}+x_{2}+x_{3}=0, x_{4}+x_{5}=0\right\}$, and let $W=$ $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{F}^{5}: x_{1}+x_{2}+x_{4}=0, x_{2}+x_{3}+x_{5}=0, x_{1}+x_{5}=0\right\}$. Find a surjective map from V to W; be sure to prove that it is surjective. Can there be an injective map from V to W ?
2. Let V and W be finite-dimensional vector spaces. Let U be a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null $T=U$ if and only if $\operatorname{dim} U \geq \operatorname{dim} V-\operatorname{dim} W$.
3. Let V and W be finite-dimensional vector spaces, and let $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity map on V.
4. Let V and W be finite-dimensional vector spaces, and let $T \in \mathcal{L}(V, W)$. Prove that there exists a basis of V and a basis of W such that, with respect to these bases, all entries of $\mathcal{M}(T)$ are 0 , except that the entries in row j, column j equal 1 for $1 \leq j \leq$ dim range T.
5. (Graduate students only) Let V and W be finite-dimensional vector spaces, and let $T \in \mathcal{L}(V, W)$. Also let v_{1}, \ldots, v_{m} be a basis of V. Prove that there exists a basis w_{1}, \ldots, w_{n} of W such that, with respect to the bases v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{n}, all the entries in the first column of $\mathcal{M}(T)$ are 0 , except that the entry in the first row and first column may equal 1.
6. (Graduate students only) Let V and W be finite-dimensional vector spaces, and let $T_{1}, T_{2} \in \mathcal{L}(V, W)$. Prove that range $T!\subseteq T_{2}$ if and only if there exists $S \in \mathcal{L}(V, V)$ such that $T_{1}=T_{2} S$.
