1. Assume A is an $m \times n$ matrix and C is an $n \times p$ matrix. Let j be an integer such that $1 \leq j \leq m$. Prove that

$$
(A C)_{j, \cdot}=\left(A_{j, \cdot}\right) C
$$

in other words that the j th row of $A C$ equals the j th row of A, times C.
2. Assume a is a $1 \times n$ matrix $\left(a_{1} \cdots a_{n}\right)$, and assume C is an $n \times p$ matrix. Prove that

$$
a C=a_{1} C_{1, \cdot}+\cdots a_{n} C_{n,}
$$

in other words that $a C$ is a linear combination of the rows of C, with the coefficients from the linear combination given by a.
3. Assume V is finite-dimensional, and $S, T, U \in \mathcal{L}(V)$ and also assume that $S T U=I$. Prove that S, T, and U are invertible. Then prove that $T^{-1}=U S$.
4. Recall that when A is an $m \times n$ matrix and $b \in \mathbf{F}^{m}$, then $A x=b$ corresponds to a system of linear equations in m equations in n unknowns. In the special case when $m=n$, prove that

$$
0 \text { is the only solution to the system } A x=0
$$

if and only if

$$
\text { the system } A x=b \text { has a solution for every choice of } b \in \mathbf{F}^{n} \text {. }
$$

5. (Graduate students only) Assume V is finite-dimensional, and $T \in \mathcal{L}(V)$. Prove that

$$
S T=T S \text { for all } S \in \mathcal{L}(V)
$$

if and only if $T=a I$ for some scalar I.

