1. Define $T \in \mathcal{L}(\mathbf{F}^3)$ by

 $T(x_1, x_2, x_3) = (4x_3, -3x_2, 0).$

Find all eigenvalues and eigenvectors of T.

- 2. Let V be a vector space, and assume that S and T are inverses of each other in $\mathcal{L}(V)$. Prove that if $v \in V$ is an eigenvector for T with eigenvalue λ , then v is also an eigenvector for S. Find the eigenvalue for v with respect to S, and prove your answer is correct.
- **3.** Let V be a vector space, and let $T \in \mathcal{L}(V)$. Define $S \in \mathcal{L}(V)$ by $S = 2T^3 5T + 4I$. Prove that if $v \in V$ is an eigenvector for T with eigenvalue λ , then v is also an eigenvector for S. Find the eigenvalue for v with respect to S, and prove your answer is correct.
- 4. Generalize your results in question 3. to the case where S = p(T) for an arbitrary polynomial $p \in \mathcal{P}(\mathbf{R})$.
- **5.** Let V be a vector space, and let U_1, \ldots, U_k be subspaces of V. Also let $T \in \mathcal{L}(V)$. Prove that if U_1, \ldots, U_k are invariant under T, then $U_1 + \cdots + U_k$ is also invariant under T.
- 6. (Graduate students only) Let V be a vector space, and let $\{U_{\alpha} : \alpha \in \Delta\}$ be an arbitrary collection of subspaces of V. Also let $T \in \mathcal{L}(V)$. Prove that if every U_{α} is invariant under T, then $\bigcap_{\alpha \in \Delta} U_{\alpha}$ is also invariant under T.