1. Define $T \in \mathcal{L}\left(\mathbf{F}^{3}\right)$ by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{3},-3 x_{2}, 0\right) .
$$

Find all eigenvalues and eigenvectors of T.
2. Let V be a vector space, and assume that S and T are inverses of each other in $\mathcal{L}(V)$. Prove that if $v \in V$ is an eigenvector for T with eigenvalue λ, then v is also an eigenvector for S. Find the eigenvalue for v with respect to S, and prove your answer is correct.
3. Let V be a vector space, and let $T \in \mathcal{L}(V)$. Define $S \in \mathcal{L}(V)$ by $S=2 T^{3}-5 T+4 I$. Prove that if $v \in V$ is an eigenvector for T with eigenvalue λ, then v is also an eigenvector for S. Find the eigenvalue for v with respect to S, and prove your answer is correct.
4. Generalize your results in question 3. to the case where $S=p(T)$ for an arbitrary polynomial $p \in \mathcal{P}(\mathbf{R})$.
5. Let V be a vector space, and let U_{1}, \ldots, U_{k} be subspaces of V. Also let $T \in \mathcal{L}(V)$. Prove that if U_{1}, \ldots, U_{k} are invariant under T, then $U_{1}+\cdots+U_{k}$ is also invariant under T.
6. (Graduate students only) Let V be a vector space, and let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be an arbitrary collection of subspaces of V. Also let $T \in \mathcal{L}(V)$. Prove that if every U_{α} is invariant under T, then $\bigcap_{\alpha \in \Delta} U_{\alpha}$ is also invariant under T.

