Math 4326/5322 Dr. Duval

- **1.** Let V be a finite-dimensional complex vector space and let $T \in \mathcal{L}(V)$. Prove that if $1 \leq k \leq \dim V$, then T has an invariant subspace of dimension k.
- **2.** Let V be a vector space, let $S, T \in \mathcal{L}(V)$, and assume that ST = TS. Prove that if $v \in V$ is an eigenvector for T with eigenvalue λ , then λ is also an eigenvalue for S. Find an eigenvector for λ with respect to S, and prove your answer is correct.
- **3.** Now a sort of converse to the previous problem. Assume V is a finite-dimensional vector space, dim V = n, and let $S, T \in \mathcal{L}(V)$. Prove that if T has n distinct eigenvalues, and S has the same eigenvectors as T, then ST = TS. (Note: S and T might have different eigenvalues.)
- 4. The Pell sequence P_1, P_2, \ldots is defined by $P_1 = 1, P_2 = 2$, and

$$P_n = P_{n-2} + 2P_{n-1}$$

for $n \ge 3$. Define $T \in \mathcal{L}(\mathbf{R}^2)$ by T(x, y) = (y, x + 2y).

- (a) Prove that $T^n(0,1) = (P_n, P_{n+1})$ for every integer $n \ge 1$.
- (b) Find the eigenvalues of T.
- (c) Find a basis of \mathbf{R}^2 consisting of eigenvectors of T.
- (d) Use the solution to part (c) to compute $T^n(0,1)$. [Hint: Write (0,1) as a linear combination of eigenvectors.]
- (e) Use your answers to parts (a) and (d) to prove that

$$P_n = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}$$

5. (Graduate students only) Let $R, T \in \mathcal{L}(\mathbf{F}^3)$, and assume R and T each have 3, 5, 9 as eigenvalues. Prove that there exists an invertible operator $S \in \mathcal{L}(\mathbf{F}^3)$ such that $R = S^{-1}TS$.