1. Let V be a finite-dimensional complex vector space and let $T \in \mathcal{L}(V)$. Prove that if $1 \leq k \leq \operatorname{dim} V$, then T has an invariant subspace of dimension k.
2. Let V be a vector space, let $S, T \in \mathcal{L}(V)$, and assume that $S T=T S$. Prove that if $v \in V$ is an eigenvector for T with eigenvalue λ, then λ is also an eigenvalue for S. Find an eigenvector for λ with respect to S, and prove your answer is correct.
3. Now a sort of converse to the previous problem. Assume V is a finite-dimensional vector space, $\operatorname{dim} V=n$, and let $S, T \in \mathcal{L}(V)$. Prove that if T has n distinct eigenvalues, and S has the same eigenvectors as T, then $S T=T S$. (Note: S and T might have different eigenvalues.)
4. The Pell sequence P_{1}, P_{2}, \ldots is defined by $P_{1}=1, P_{2}=2$, and

$$
P_{n}=P_{n-2}+2 P_{n-1}
$$

for $n \geq 3$. Define $T \in \mathcal{L}\left(\mathbf{R}^{2}\right)$ by $T(x, y)=(y, x+2 y)$.
(a) Prove that $T^{n}(0,1)=\left(P_{n}, P_{n+1}\right)$ for every integer $n \geq 1$.
(b) Find the eigenvalues of T.
(c) Find a basis of \mathbf{R}^{2} consisting of eigenvectors of T.
(d) Use the solution to part (c) to compute $T^{n}(0,1)$. [Hint: Write $(0,1)$ as a linear combination of eigenvectors.]
(e) Use your answers to parts (a) and (d) to prove that

$$
P_{n}=\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}}
$$

5. (Graduate students only) Let $R, T \in \mathcal{L}\left(\mathbf{F}^{3}\right)$, and assume R and T each have $3,5,9$ as eigenvalues. Prove that there exists an invertible operator $S \in \mathcal{L}\left(\mathbf{F}^{3}\right)$ such that $R=S^{-1} T S$.
