1. Let $V$ be an inner product space, and let $T \in \mathcal{L}(V)$. Prove that if $\|T v\| \geq\|v\|$ for every $v \in V$, then $5 T-2 I$ is invertible.
2. Find vectors $w, z \in \mathbf{R}^{2}$ such that $w$ is a scalar multiple of $(2,4), z$ is orthogonal to $(2,4)$, and $(1,3)=w+z$.
3. Let $n$ be a positive integer, and let $x_{1}, \ldots, x_{n}$ be real numbers. Prove that

$$
\left(x_{1}+\cdots+x_{n}\right)^{2} \leq n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) .
$$

4. Is the function that takes $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in \mathbf{R}^{2} \times \mathbf{R}^{2}$ to $x_{1} y_{2}+x_{2} y_{1}$ an inner product on $\mathbf{R}^{2}$, or not? Prove your answer is correct.
5. (Graduate students only) Let $V$ be an inner product space, and let $T \in \mathcal{L}(V)$ be injective. Define $\langle\langle\cdot, \cdot\rangle\rangle$ by

$$
\langle\langle u, v\rangle\rangle=\langle T u, T v\rangle
$$

for $u, v \in V$. Prove that $\langle\langle\cdot, \cdot\rangle\rangle$ is an inner product.

