Math 4326/5322 Dr. Duval

- **1.** Let V be an inner product space, and let $T \in \mathcal{L}(V)$. Prove that if $||Tv|| \ge ||v||$ for every $v \in V$, then 5T 2I is invertible.
- **2.** Find vectors $w, z \in \mathbf{R}^2$ such that w is a scalar multiple of (2, 4), z is orthogonal to (2, 4), and (1, 3) = w + z.
- **3.** Let n be a positive integer, and let x_1, \ldots, x_n be real numbers. Prove that

$$(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2).$$

- 4. Is the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbf{R}^2 \times \mathbf{R}^2$ to $x_1y_2 + x_2y_1$ an inner product on \mathbf{R}^2 , or not? Prove your answer is correct.
- 5. (Graduate students only) Let V be an inner product space, and let $T \in \mathcal{L}(V)$ be injective. Define $\langle \langle \cdot, \cdot \rangle \rangle$ by

$$\langle \langle u, v \rangle \rangle = \langle Tu, Tv \rangle$$

for $u, v \in V$. Prove that $\langle \langle \cdot, \cdot \rangle \rangle$ is an inner product.