Homework

Wednesday, January 23
Follow the separate general guidelines for Parts A,B,C. Be sure to include and label all four standard parts (a), (b), (c), (d) of Part A in what you hand in.

$$
\mathbf{R}^{n} \text { and } \mathbf{C}^{n}
$$

Section 1.A
A: Reading questions. Due by 2pm, Sun., 27 Jan.

1. Verify, using properties of real numbers, and that $(-i)^{2}=-1$, that complex numbers satisfy the distributive property.
2. What does \mathbf{F} stand for?
3. What two things does 0 stand for? Why do we use this same symbol for both of these things?
4. The picture for addition in \mathbf{F}^{n} on p. 9 is 2-dimensional $(n=2)$, since it is drawn on a 2-dimensional piece of paper. Does this picture work for larger values of n ? Why or why not?
5. What gets multiplied in scalar multiplication?

B: Warmup exercises. For you to present in class. Due by the end of class Mon., 28 Jan.
Exercises 1.A: 2, 10, 15

Definition of Vector Space

Section 1.B
A: Reading questions. Due by 2 pm, Tue., 29 Jan.

1. Verify commutativity in \mathbf{F}^{∞}.
2. Verify distributivity in \mathbf{F}^{S}.
3. In the proof of result 1.26 (Unique additive inverse), why do we "[s]uppose that w and w^{\prime} are additive inverses of $v "$?
4. In result 1.30 (A number times the vector 0), identify which properties of vector spaces are used at each step of the proof.
5. Result 1.31 (The number - 1 times a vector) may seem unnecessary to prove. But $(-1) v$ and $-v$ are defined differently, if you look carefully at the definitions. How is each one defined?

B: Warmup exercises. For you to present in class. Due by end of class Wed., 30 Jan.
Exercises 1.B: 1, 3, 4

