Homework

Monday, April 15
Follow the separate general guidelines for Parts A,B,C. Be sure to include and label all four standard parts (a), (b), (c), (d) of Part A in what you hand in.

Orthogonal Complements and Minimization Problems

Section 6.C
A: Reading questions. Due by 2 pm, Sun., 21 Apr.

1. Find U^{\perp} for $U=\operatorname{span}((9,1,5))$ in $V=\mathbf{R}^{3}$. Describe U^{\perp} geometrically in this case.
2. Verify result 6.47 (Direct sum. . . orthogonal complement) in the case of question 1 above.
3. Find $P_{U} v$ for $v=(1,2,3)$ and $U=\operatorname{span}((9,1,5))$ in $V=\mathbf{R}^{3}$.
4. In Example 6.58, approximating $\sin x$ by a 5th-degree polynomial, explain how $\int_{-\pi}^{\pi}|\sin x-u(x)|^{2} d x$ is minimized using the inner product 6.59 and result 6.56 (Minimizing the distance...).

B: Warmup exercises. For you to present in class. Due by the end of class Mon., 22 Apr.
Exercises 6.C: 4, 11.

Self-Adjoint and Normal Operators (Part I): Adjoints

Section 7.A, pp. 203-208
A: Reading questions. Due by 2 pm, Tue., 23 Apr.

1. Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{4}$ by

$$
T\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, 3 x_{2}, x_{1}-x_{2},-2 x_{2}\right)
$$

Find a formula for T^{*}, the adjoint of T.
2. Provide justification for every equation in the proof of result 7.5 (The adjoint is a linear map).
3. Provide justification for every equation in the proof of result 7.6(a) (Properties of the adjoint: additivity).
4. Let T be the linear map in question 1 above. Find a vector $v \in \operatorname{null} T^{*}(v \neq 0)$, and show $v \in(\text { range } T)^{\perp}$, thus providing an example of result 7.7(a) (Null space and range of $\left.T^{*}\right)$.

B: Warmup exercises. For you to present in class. Due by end of class Wed., 24 Apr.
Exercises 7.A: 1

