1. In this problem you will analyze a 2×2 zero-sum game in almost complete generality. Assume the associated matrix is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

To simplify the situation a little, we will assume that a, b, c, and d are all distinct, i.e., no two of these four quantities equal each other. By symmetry, we may as well assume that $a>b$. (Explain why we can make that assumption.)

Now consider two cases:
(i) $b<d$
(ii) $b>d$

In each case, give the value of the game.
2. Find the value of the following zero-sum game:

$$
\left(\begin{array}{ll}
1 & 9 \\
2 & 7 \\
3 & 6 \\
6 & 4
\end{array}\right)
$$

3. (a) Let J denote the matrix with m rows and n columns, whose every entry is 1 . Prove that if $\mathbf{x} \in \Delta_{m}$ and $\mathbf{y} \in \Delta_{n}$, then $\mathbf{x}^{T} J \mathbf{y}=1$.
(b) Assume zero-sum games G and H each have m strategies for player I (who chooses the rows) and n strategies for player II (who choose the columns). For any strategy pair (i, j) (in other words, player I chooses strategy i and player II chooses strategy j), denote the payoff (for player I) in game G by $g_{i, j}$ and denote the payoff (for player I) in game H by $h_{i, j}$. Let b be a real number, and assume that $h_{i, j}=g_{i, j}-b$ for all i, j.
Use the result in part (a) to prove that $V(H)=V(G)-b$, where $V(G)$ and $V(H)$ denote the values of games G and H, respectively.
