1. Exercise A. 1

2. For each of the following zero-sum games:

- convert the game into a linear programming problem (include both the primal and the dual, and state clearly which corresponds to the row player, and which to the column player);
- solve the corresponding linear programs (via Excel spreadsheet, for instance);
- convert the solutions to the linear programs to mixed strategies for each of the row and column players; and
- show that the mixed strategies satisfy the equalizing payoffs criterion.
(a) $\left(\begin{array}{ll}2 & 6 \\ 4 & 3\end{array}\right)$ (example from class)
(b) $\left(\begin{array}{rrr}1 & 0 & 3 \\ -2 & 3 & 0 \\ -4 & 5 & -6\end{array}\right)$
(c) $\left(\begin{array}{rrrrr}-2 & 3 & 0 & 5 & -6 \\ 3 & -4 & 5 & 0 & 7 \\ -4 & 5 & -6 & 7 & 0\end{array}\right)$

