1. Part of the multiplication table for the group $G=\{a, b, c, d, e\}$ is given below. Complete the table.

\times	a	b	c	d	e
a			a		
b					
c					
d				b	
e					a

2. Determine whether the set

$$
\{[1],[3],[7],[9]\} \subseteq \mathbf{Z}_{10}
$$

is a group with operation multiplication, and justify your answer.
3. Let P denote the set of polynomials in x of degree at most 1 (so the set of polynomials of the form $a x+b$, where a and b may be any real number). Determine whether P is a group with the operation addition, and justify your answer. Then determine whether P is a group with the operation multiplication, and justify your answer.
4. Let G be a group, and let $a, b, c \in G$. Prove that the equation $a x b=c$ has a unique solution x.

