Math 5370 Dr. Duval

- **1.** Define a mapping $\phi \colon \mathbf{Z}_n \to \mathbf{Z}_n$ by $\phi([a]) = [n a]$, for $0 \le a < n$. Prove that ϕ is an isomorphism from the additive group \mathbf{Z}_n to itself.
- **2.** Consider the additive groups \mathbf{Z}_{14} and \mathbf{Z}_7 , and define $\phi: \mathbf{Z}_{14} \to \mathbf{Z}_7$ by

 $\phi([x]_{14}) = [3x]_7.$

Prove that ϕ is a homomorphism and find ker ϕ . Is ϕ an epimorphism? Is ϕ a monomorphism?

3. Recall that in Homework 2 you proved that

$$H = \left\{ \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} : b \in \mathbf{R} \right\}.$$

is a subgroup of $GL(2, \mathbf{R})$. Prove that H is isomorphic to $(\mathbf{R}, +)$, the additive group of the real numbers. (Note that the group operation for H is **multiplication**, but the group operation for $(\mathbf{R}, +)$ is **addition**.)

- 4. Recall that the magnitude |a + bi| of a complex number a + bi is given by $|a + bi| = \sqrt{a^2 + b^2}$.
 - (a) Prove that $\phi(a+bi) = |a+bi|$ is a homomorphism from the multiplicative group of the non-zero complex numbers $\mathbf{C} - \{0\}$ to the multiplicative group of positive real numbers \mathbf{R}^+ .
 - (b) Draw the location in the complex plane of all the elements of ker ϕ .