Homework 3

due Thursday, February 13

1. Define a mapping $\phi: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n}$ by $\phi([a])=[n-a]$, for $0 \leq a<n$. Prove that ϕ is an isomorphism from the additive group \mathbf{Z}_{n} to itself.
2. Consider the additive groups \mathbf{Z}_{14} and \mathbf{Z}_{7}, and define $\phi: \mathbf{Z}_{14} \rightarrow \mathbf{Z}_{7}$ by

$$
\phi\left([x]_{14}\right)=[3 x]_{7}
$$

Prove that ϕ is a homomorphism and find ker ϕ. Is ϕ an epimorphism? Is ϕ a monomorphism?
3. Recall that in Homework 2 you proved that

$$
H=\left\{\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]: b \in \mathbf{R}\right\}
$$

is a subgroup of $G L(2, \mathbf{R})$. Prove that H is isomorphic to $(\mathbf{R},+)$, the additive group of the real numbers. (Note that the group operation for H is multiplication, but the group operation for $(\mathbf{R},+)$ is addition.)
4. Recall that the magnitude $|a+b i|$ of a complex number $a+b i$ is given by $|a+b i|=$ $\sqrt{a^{2}+b^{2}}$.
(a) Prove that $\phi(a+b i)=|a+b i|$ is a homomorphism from the multiplicative group of the non-zero complex numbers $\mathbf{C}-\{0\}$ to the multiplicative group of positive real numbers \mathbf{R}^{+}.
(b) Draw the location in the complex plane of all the elements of $\operatorname{ker} \phi$.

