ALGEBRAIC STRUCTURES Homework 4

due Thursday, February 20

- 1. Recall (or recreate) the multiplication table you made for the group of symmetries of a triangle. Prove that this group is isomorphic to the group of all permutations on the set $\{1, 2, 3\}$.
- **2.** Let k be a positive integer. Prove that $k\mathbf{Z} = \{kn \colon n \in \mathbf{Z}\}$ is a subgroup of $(\mathbf{Z}, +)$, the additive subgroup of \mathbf{Z} . Then describe all the left cosets of $k\mathbf{Z}$ (your answer will depend on k).
- **3.** Let G and H be groups, and let ϕ be a homomorphism from G to H. Prove that ker ϕ is a subgroup of G.
- **4.** Let G be a group, and let H be a subgroup of G. Prove that $c \in H$ if and only if cH = H and Hc = H.