Math 5370 Dr. Duval

- **1.** Let G be a group, and let H and K be normal subgroups of G. Prove that $H \cap K$ is a normal subgroup of G.
- 2. Let G be the group of symmetries of a triangle. Recall that we showed in class that the subgroup H of rotations is a normal subgroup of G, and that G/H is isomorphic to \mathbb{Z}_2 , the cyclic group of order two. Illustrate Theorem 4.25 in this example, by directly describing the epimorphism from G to \mathbb{Z}_2 , and directly proving (without referring to Theorem 4.25 itself) that it is an epimorphism.
- **3.** Let $Q = \{1, -1, i, -i, j, -j, k, -k\}$ be the quaternion group, and let $\mathbf{Z}_2 = \{e, a\}$ be the cyclic group of order 2 (where *e* is the identity and $a^2 = e$; we are using this description of \mathbf{Z}_2 so that Q and \mathbf{Z}_2 do not reuse any names for their respective group elements).

Let $\phi: Q \to \mathbb{Z}_2$ satisfy $\phi(i) = \phi(j) = a$. Find $\phi(g)$ for the remaining elements of G so that ϕ is a homomorphism. Prove that ϕ is in fact an epimorphism, and find ker ϕ .

Finally, illustrate Theorem 4.28 in this example, by describing $Q/\ker\phi$ and proving it is isomorphic to \mathbb{Z}_2 , without referring to Theorems 4.27 or 4.28 themselves.