Math 5370 Dr. Duval

ALGEBRAIC STRUCTURES Homework 7

due Thursday, March 26

1. Define, for any real numbers a and b,

$$S_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Also define

$$F = \{S_{a,b} \colon a \in \mathbf{Q}, \ b \in \mathbf{Q}\} \subseteq M_2(\mathbf{Q}),$$

a subset of $M_2(\mathbf{Q})$ (the set of 2×2 rational matrices).

Prove that F is a subring of $M_2(\mathbf{Q})$, with the usual matrix addition and multiplication.

- 2. Prove that F from problem 1. is a field.
- **3.** Define, for any real numbers a and b,

$$T_{a,b} = \begin{pmatrix} a+b & b \\ b & a-b \end{pmatrix}.$$

Also define

$$D = \{T_{a,b} \colon a \in \mathbf{Z}, b \in \mathbf{Z}\} \subseteq M_2(\mathbf{Z}),$$

a subset of $M_2(\mathbf{Z})$ (the set of 2×2 integer matrices).

Prove that D is a subring of $M_2(\mathbf{Z})$, with the usual matrix addition and multiplication.

4. Prove that D from problem 3. is an integral domain. (Hint: Remember that $\sqrt{2}$ is irrational.)