Homework 7

due Thursday, March 26

1. Define, for any real numbers a and b,

$$
S_{a, b}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Also define

$$
F=\left\{S_{a, b}: a \in \mathbf{Q}, b \in \mathbf{Q}\right\} \subseteq M_{2}(\mathbf{Q}),
$$

a subset of $M_{2}(\mathbf{Q})$ (the set of 2×2 rational matrices).
Prove that F is a subring of $M_{2}(\mathbf{Q})$, with the usual matrix addition and multiplication.
2. Prove that F from problem 1. is a field.
3. Define, for any real numbers a and b,

$$
T_{a, b}=\left(\begin{array}{cc}
a+b & b \\
b & a-b
\end{array}\right) .
$$

Also define

$$
D=\left\{T_{a, b}: a \in \mathbf{Z}, b \in \mathbf{Z}\right\} \subseteq M_{2}(\mathbf{Z})
$$

a subset of $M_{2}(\mathbf{Z})$ (the set of 2×2 integer matrices).
Prove that D is a subring of $M_{2}(\mathbf{Z})$, with the usual matrix addition and multiplication.
4. Prove that D from problem 3. is an integral domain. (Hint: Remember that $\sqrt{2}$ is irrational.)

