Enumerating simplicial spanning trees of shifted and color-shifted complexes, using simplicial effective resistance

Art Duval ${ }^{1}$, Woong Kook ${ }^{2}$, Kang-Ju Lee ${ }^{2}$, Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso, ${ }^{2}$ Seoul National University, ${ }^{3}$ University of Kansas
AMS Central Sectional Meeting
Special Session on Geometric and Topological Combinatorics and Their Applications
Online (formerly at Creighton University)
October 9, 2021
Thanks to Simons Foundation Grant 516801

Ferrers graphs (Ehrenborg-van Willigenburg '04)

Example ($\langle 42,23\rangle)$

	1	2	4	
1	11	21	31	41
	12	22	32	42
	13	23		

Spanning trees of Ferrers graphs

$$
\text { wt } T=(1234)(123) 23123
$$

Spanning trees of Ferrers graphs


```
\[
\text { wt } T=(1234)(123) 23123
\]
\[
\text { wt } T=(1234)(123) 2^{2} 1^{3}
\]
```


Spanning trees of Ferrers graphs

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	32	42
3	13	23		

Total is (1234)(123)

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)$

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}$

Theorem

	1		2	3
1	11	21	31	41
	12	22	32	42
	13	23		

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}$
Theorem (Ehrenborg-van Willigenburg)
This works in general

Proof - by electrical network theory!

- Set $l_{i j}=1$
- Set $R_{p q}=(p q)^{-1}$
- Find remaining currents so they satisfy Kirchhoff's Laws
- Compute $V_{i j}$, which is effective resistance since $I_{i j}=1$

Proof - by electrical network theory!

- Set $l_{i j}=1$
- Set $R_{p q}=(p q)^{-1}$
- Find remaining currents so they satisfy Kirchhoff's Laws
- Compute $V_{i j}$, which is effective resistance since $I_{i j}=1$

Theorem (Thomassen '90)

$$
V_{i j}=\frac{\text { spanning trees with } i j}{\text { spanning trees without } i j}
$$

From this, we can easily get

$$
\frac{\text { spanning trees of (graph with } i j \text {) }}{\text { spanning trees of (graph without } i j \text {) }}
$$

Now apply induction

Example (Unweighted)

Example $\left(K_{3,2}=\langle 32\rangle\right)$

Example (Unweighted)

Example $\left(K_{3,2}=\langle 32\rangle\right)$

Example (Unweighted)

Example ($\left.K_{3,2}=\langle 32\rangle\right)$

Example (Unweighted)

Example $\left(K_{3,2}=\langle 32\rangle\right)$

$\frac{\text { trees with edge }}{\text { trees without edge }}=\frac{8}{4}=2$

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current \quad Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current \quad Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Voltage Sum of voltage drops around a cycle is 0

- $\left(\text { ker } \partial_{1}\right)^{\perp}$
- spanned by coboundaries of vertices
- there is a potential function ϕ such that $\phi(\partial e)=V_{e}$.

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Voltage \quad Sum of voltage drops around a cycle is 0

- $\left(\operatorname{ker} \partial_{1}\right)^{\perp}$
- spanned by coboundaries of vertices
- there is a potential function ϕ such that $\phi(\partial e)=V_{e}$.

Ohm $V=I R$

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Voltage Sum of voltage drops around a cycle is 0

- $\left(\operatorname{ker} \partial_{1}\right)^{\perp}$
- spanned by coboundaries of vertices
- there is a potential function ϕ such that $\phi(\partial e)=V_{e}$.

Ohm $V=I R$
Can "solve" circuits by minimizing energy ($R I^{2}$ on each edge)

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with a d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage circulation V

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with a d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage circulation V
Current \quad ker ∂_{d}

- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with a d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage circulation V
Current \quad ker ∂_{d}

- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Voltage $-\left(\text { ker } \partial_{d}\right)^{\perp}$

- Sum of voltage circulations around oriented d-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma)=V_{\sigma}$.

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with a d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage circulation V
Current \quad ker ∂_{d}

- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Voltage $>\left(\text { ker } \partial_{d}\right)^{\perp}$

- Sum of voltage circulations around oriented d-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma)=V_{\sigma}$.

Ohm $V=I R$

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with a d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage circulation V
Current \quad ker ∂_{d}

- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Voltage $>\left(\text { ker } \partial_{d}\right)^{\perp}$

- Sum of voltage circulations around oriented d-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma)=V_{\sigma}$.

Ohm $V=I R$
We still have energy minimization.

Simplicial effective resistance

Let σ be a facet of simplicial complex X

- Set $I_{\sigma}=1$
- Set $R_{\tau}=\left(x_{\tau}\right)^{-1}$ for all other facets τ.
- Assume remaining currents satisfy simplicial network laws
- Compute V_{σ}, which is effective resistance since $I_{\sigma}=1$.

Simplicial effective resistance

Let σ be a facet of simplicial complex X

- Set $I_{\sigma}=1$
- Set $R_{\tau}=\left(x_{\tau}\right)^{-1}$ for all other facets τ.
- Assume remaining currents satisfy simplicial network laws
- Compute V_{σ}, which is effective resistance since $I_{\sigma}=1$.

Theorem (Kook-Lee '18)

$$
V_{\sigma}=\frac{\hat{k}_{d}(X)_{\sigma}}{\hat{k}_{d}(X-\sigma)}
$$

where \hat{k}_{d} is a torsion-weighted simplicial tree count, and $\hat{k}_{d}(X)_{\sigma}$ means restricted to trees containing σ.

Simplicial spanning trees (Kalai '83; D.-Klivans-Martin '09)

Let X be a d-dimensional simplicial complex.
$T \subseteq X$ is a simplicial spanning tree of Δ when:
0. $T_{(d-1)}=X_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(T ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(T ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(T)=f_{d}(X)-\tilde{\beta}_{d}(X)+\tilde{\beta}_{d-1}(X)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

Simplicial spanning trees (Kalai '83; D.-Klivans-Martin '09)

Let X be a d-dimensional simplicial complex.
$T \subseteq X$ is a simplicial spanning tree of Δ when:
0. $T_{(d-1)}=X_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(T ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(T ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(T)=f_{d}(X)-\tilde{\beta}_{d}(X)+\tilde{\beta}_{d-1}(X)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

$$
\begin{aligned}
& k_{d}(X)=\sum_{T \in \mathcal{T}(X)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} \\
& \hat{k}_{d}(X)=\sum_{T \in \mathcal{T}(X)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} w t T
\end{aligned}
$$

Color-shifted complexes

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Color-shifted complexes

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Note: $r=2$ is Ferrers graphs

Color-shifted complexes

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Note: $r=2$ is Ferrers graphs
Example
$\langle 235,324,333\rangle$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 5^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\times(1+2+3)^{5}(1+2)^{3}
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

\times
$(1+2+3)^{6}(1+2)$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 5^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Conjectured by Aalipour-AD (long matrix manipulation pf. $r=3$)

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Conjectured by Aalipour-AD (long matrix manipulation pf. $r=3$)
Proof by simplicial effective resistance (DKLM):

- $\left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)\left(1^{8} 1^{7} 1^{4}\right)$ for initial tree

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Conjectured by Aalipour-AD (long matrix manipulation pf. $r=3$)
Proof by simplicial effective resistance (DKLM):

- $\left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)\left(1^{8} 1^{7} 1^{4}\right)$ for initial tree
- induction (ex.) When adding in 235, effective resistance says

$$
\frac{\text { trees in new complex }}{\text { trees in original complex }}=\frac{1+2}{1} \frac{1+2+3}{1+2} \frac{1+\cdots+5}{1+\cdots+4}
$$

Shifted complexes

Definition

A shifted complex is a simplicial complex with:

- vertex set $1, \ldots, n$;
- if $v<w$, then you can always replace w by v.

Example ($\langle 245\rangle$)
$123,124,125,134,135,145,234,235,245$

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1
- When adding (e.g.) 23 5, effective resistance says

$$
\begin{aligned}
& \quad \frac{D_{2} D_{3} D_{5}}{D_{1} D_{2} D_{4}}=\frac{D_{3}}{D_{1}} \frac{D_{5}}{D_{4}} \\
& \text { where } D_{j}=x_{1}+\cdots+x_{j} .
\end{aligned}
$$

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1
- When adding (e.g.) 23 5, effective resistance says

$$
\begin{aligned}
& \quad \frac{D_{2} D_{3} D_{5}}{D_{1} D_{2} D_{4}}=\frac{D_{3}}{D_{1}} \frac{D_{5}}{D_{4}} \\
& \text { where } D_{j}=x_{1}+\cdots+x_{j} .
\end{aligned}
$$

- When done, left with red edges divided by black edges with 1's.

