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Ferrers graphs (Ehrenborg-van Willigenburg ’04)

Example (〈42, 23〉)
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Spanning trees of Ferrers graphs

I T =

HH
HH











@

@
@
@

��
��

H
HHH�
�
�
�

��
��

�
�
�
�

rrrr

rrr
1

2

3

4

1

2

3

wtT = (1234)(123)23123

I T =

H
HHH
@
@
@
@��
��

�
�
�
�

��
��

H
HHH�
�
�
�











rrrr

rrr
1

2

3

4

1

2

3

wtT = (1234)(123)2213

I Total is (1234)(123)(1 + 2 + 3 + 4)(1 + 2)(1 + 2 + 3)(1 + 2)2
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Theorem

11 21 31 41

12 22 32 42

13 23
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Theorem (Ehrenborg-van Willigenburg)

This works in general
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Proof – by electrical network theory!

I Set Ii j = 1

I Set Rpq = (pq)−1

I Find remaining currents so they satisfy Kirchhoff’s Laws

I Compute Vi j , which is effective resistance since Ii j = 1

Theorem (Thomassen ’90)

Vi j =
spanning trees with i j

spanning trees without i j

From this, we can easily get

spanning trees of (graph with i j)

spanning trees of (graph without i j)

Now apply induction
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Example (Unweighted)

Example (K3,2 = 〈32〉)
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Kirchhoff’s Laws
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Start with a simple graph. Each edge has a positive resistance R,
directed current I , and directed voltage drop V

Current I Sum of currents at a vertex is 0
I ker ∂1
I spanned by directed cycles

Voltage I Sum of voltage drops around a cycle is 0
I (ker ∂1 )⊥

I spanned by coboundaries of vertices
I there is a potential function φ such that φ(∂ e) = Ve .

Ohm V = IR

Can “solve” circuits by minimizing energy (RI 2 on each edge)
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Simplicial networks (Catanzaro-Chernyak-Klein ’15)

Start with a d-dimensional simplicial complex. Each facet has a
positive resistance R, oriented current I , oriented voltage
circulation V

Current I ker ∂d
I Sum of currents at a ridge (codimension 1 face) is 0
I Spanned by oriented d-spheres

Voltage I (ker ∂d )⊥

I Sum of voltage circulations around oriented d-spheres is 0
I Spanned by coboundaries of ridges
I There is a potential function such that φ(∂ σ) = Vσ.

Ohm V = IR

We still have energy minimization.
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Simplicial effective resistance

Let σ be a facet of simplicial complex X

I Set Iσ = 1

I Set Rτ = (xτ )−1 for all other facets τ .

I Assume remaining currents satisfy simplicial network laws

I Compute Vσ, which is effective resistance since Iσ = 1.

Theorem (Kook-Lee ’18)

Vσ =
k̂d(X )σ

k̂d(X − σ)

where k̂d is a torsion-weighted simplicial tree count, and k̂d(X )σ
means restricted to trees containing σ.



Simplicial effective resistance

Let σ be a facet of simplicial complex X

I Set Iσ = 1

I Set Rτ = (xτ )−1 for all other facets τ .

I Assume remaining currents satisfy simplicial network laws

I Compute Vσ, which is effective resistance since Iσ = 1.

Theorem (Kook-Lee ’18)

Vσ =
k̂d(X )σ

k̂d(X − σ)

where k̂d is a torsion-weighted simplicial tree count, and k̂d(X )σ
means restricted to trees containing σ.



Simplicial spanning trees (Kalai ’83; D.-Klivans-Martin ’09)

Let X be a d-dimensional simplicial complex.
T ⊆ X is a simplicial spanning tree of ∆ when:

0. T(d−1) = X(d−1) (“spanning”);

1. H̃d−1(T ;Z) is a finite group (“connected”);

2. H̃d(T ;Z) = 0 (“acyclic”);

3. fd(T ) = fd(X )− β̃d(X ) + β̃d−1(X ) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third.

I When d = 1, coincides with usual definition.

kd(X ) =
∑

T∈T (X )

|H̃d−1(T ,Z)|2

k̂d(X ) =
∑

T∈T (X )

|H̃d−1(T ,Z)|2 wtT
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Color-shifted complexes

Definition (Babson-Novik, ’06)

A color-shifted complex is a simplicial complex with:

I vertex set V1∪̇ . . . ∪̇Vr (Vi is set of vertices of color i);

I every facet contains one vertex of each color; and

I if v < w are vertices of the same color, then you can always
replace w by v .

Note: r = 2 is Ferrers graphs

Example

〈235, 324, 333〉
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Enumeration: τ̂(〈235, 324, 333〉)

(172736)(172737)(1525354554)

× (1 + 2 + 3)5(1 + 2)3 (1 + 2 + 3)6(1 + 2)

× (1 + · · ·+ 5)2(1 + 2 + 3 + 4)(1 + 2 + 3)
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Proof

(172736)(172737)(1525354554)

× (1 + 2 + 3)5(1 + 2)3 (1 + 2 + 3)6(1 + 2)

× (1 + · · ·+ 5)2(1 + 2 + 3 + 4)(1 + 2 + 3)

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)

Proof by simplicial effective resistance (DKLM):

I (172736)(172737)(1525354554)(181714) for initial tree

I induction (ex.) When adding in 235, effective resistance says

trees in new complex

trees in original complex
=

1 + 2

1

1 + 2 + 3

1 + 2

1 + · · ·+ 5

1 + · · ·+ 4
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Shifted complexes

Definition
A shifted complex is a simplicial complex with:

I vertex set 1, . . . , n;

I if v < w , then you can always replace w by v .

Example (〈245〉)
123, 124, 125, 134, 135, 145, 234, 235, 245



Enumerating spanning trees of shifted complexes

123

12 4

12 5 1 34

1 3 5

1 45

234

23 5

2 45 23 6

345 2 4 6

1

1

1

4

3 5

2 5

Proved by D.-Klivans-Martin
’09; here are ideas of new proof
(DKLM) with effective resis-
tance

I Start with spanning tree
of facets with 1

I When adding (e.g.) 23 5,
effective resistance says

D2D3 D5

D1D2 D4
=

D3

D1

D5

D4

where Dj = x1 + · · ·+ xj .

I When done, left with red
edges divided by black
edges with 1’s.
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