
A non-partitionable Cohen-Macaulay simplicial
complex, and implications for Stanley depth

Art Duval1, Bennet Goeckner2, Caroline Klivans3,
Jeremy Martin2

1University of Texas at El Paso, 2University of Kansas, 3Brown University

Mathematical Congress of the Americas
Special Session on Combinatorial Commutative Algebra

McGill University, Montréal
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Partitionability Conjecture

Richard Stanley: “. . . a central combinatorial conjecture on
Cohen-Macaulay complexes is the following.”

Conjecture (Stanley ’79; Garsia ’80)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM ’16)

No.

Stanley: “I am glad that this problem has finally been put to rest,
though I would have preferred a proof rather than a
counterexample. Perhaps you can withdraw your paper from the
arXiv and come up with a proof instead.”
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Stanley depth

Definition (Stanley)

Let S = k[x1, . . . , xn], and let M be a Zn-graded S-module. Then
sdepthM denotes the Stanley depth of M.

Conjecture (Stanley ’82)

sdepthM ≥ depthM

Theorem (Herzog, Jahan, Yassemi ’08)

If I∆ is the Stanley-Reisner ideal of a Cohen-Macaulay complex ∆,
then the inequality sdepthS/I∆ ≥ depth S/I∆ is equivalent to the
partitionability of ∆.

Corollary (DGKM ’16)

Our counterexample disproves this conjecture as well.
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Simplicial complexes

Definition (Simplicial complex)

Let V be set of vertices. Then ∆ is a simplicial complex on V if:

I ∆ ⊆ 2V ; and

I if σ ⊆ τ ∈ ∆ implies τ ∈ ∆.

Higher-dimensional analogue of graph.

Definition (f -vector)

fi = fi (∆) = number of i-dimensional faces of ∆. The f -vector of
(d − 1)-dimensional ∆ is

f (∆) = (f−1, f0, f1, . . . , fd−1)

Example

f (∆) = (1, 5, 9, 6)
2
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Cohen-Macaulay complexes

Definition (Stanley-Reisner face-ring)

Assume ∆ has vertices 1, . . . , n. Define xF =
∏

j∈F xj . Define I∆
to be the ideal I∆ = 〈xF : F 6∈ ∆〉. The Stanley-Reisner face-ring is

k[∆] = k[x1, . . . , xn]/I∆.

Definition (Cohen-Macaulay ring)

A ring R is Cohen-Macaulay when dimR = depthR.

In our setting dimk[∆] = dimk[x1, . . . , xn]/I∆ = d .

Definition (Cohen-Macaulay simplicial complex)

A simplicial complex ∆ is Cohen-Macaulay when k[∆] is.

Remark (Munkres ’84)

Being Cohen-Macaulay is topological, depends only on |∆|,
geometric realization of ∆ (and on the field k).
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h-vector

F (k[∆], λ) =
∑
α∈Zn

dimk(k[∆]α)tα

=
d−1∑
i=−1

fi t
i+1

(1− t)i+1
=

∑d
k=0 hkt

k

(1− t)d

This means
d∑

i=0

fi−1t
d−i =

d∑
k=0

hk(t + 1)d−k .

The h-vector of ∆ is h(∆) = (h0, h1, . . . , hd). Coefficients not
always non-negative, but they are for CM complexes.

Example

2

3

1

5

4 f (∆) = (1, 5, 9, 6), and

1t3+5t2+9t+6 = 1(t+1)3+2(t+1)2+2(t+1)1+1

so h(∆) = (1, 2, 2, 1).
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Partitionability

1t3 + 5t2 + 9t + 6 = 1(t + 1)3 + 2(t + 1)2 + 2(t + 1)1 + 1

5

/
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Definition (Partitionable)

When a simplicial complex can be partitioned like this, into
Boolean intervals whose tops are facets, we say the complex is
partitionable.
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Key to construction: Relative complexes

Definition
If Γ ⊆ ∆ are simplicial complexes, then (∆, Γ) is a relative
simplicial complex (this representation is not unique); think of ∆
with Γ removed.

We can extend CM to define relative CM
complexes.

Remark
We found a relative CM complex, Q5 = (X5,A5) that is not
partitionable. (Inside Ziegler’s 3-dimensional non-shellable ball;
dimX5 = 3 and X5 has 5 facets.)

Question
If we glue together two copies of X5 along A5, is it partitionable?

Maybe. Some parts of A5 might help partition one copy of X5,
while other parts of A5 help partition the other copy of X5.
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Pigeonhole principle

Recall our example (X ,A) is:

I relative Cohen-Macaulay

I not partitionable

I A vertex-induced (minimal faces of (X ,A) are vertices)

Remark
If we glue together many copies of X along A, at least one copy
will be missing all of A!

How many is enough? More than the
number of all faces in A. Then the result will not be partitionable.

Remark
But the resulting complex is not actually a simplicial complex
because of repeats. To avoid this problem, we need to make sure
that A is vertex-induced. This means every face in X among
vertices in A must be in A as well. (Minimal faces of (X ,A) are
vertices.)
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Eureka!

By computer search, we found that if

I Z is Ziegler’s non-shellable 3-ball, and

I B = Z restricted to all vertices except 1,5,9 (B has 7 facets),

then Q = (Z ,B) satisfies all our criteria!

Also Q = (X ,A), where X has 14 facets, and A is 5 triangles:

3
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5

9
1249 1269
1569 1589
1489 1458
1457 4578
1256 0125
0256 0123
1234 1347
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Putting it all together

I Since A has 24 faces total (including the empty face), we
know gluing together 25 copies of X along their common copy
of A, the resulting (non-relative) complex C25 is CM, not
partitionable.

I In fact, computer search showed that gluing together only 3
copies of X will do it. Resulting complex C3 has f -vector
(1, 16, 71, 98, 42).

I Later we found short proof by hand to show that C3 works.
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Stanley Decompositions

Definition
Let S = k[x1, . . . , xn]; µ ∈ S a monomial; and A ⊆ {x1, . . . , xn}.
The corresponding Stanley space in S is the vector space

µ · k[A] = k- span{µν : supp(ν) ⊆ A}.

Let I ⊆ S be a monomial ideal. A Stanley decomposition of S/I is
a family of Stanley spaces

D = {µ1 · k[A1], . . . , µr · k[Ar ]} such that

S/I =
r⊕

i=1

µi · k[Ai ].

(And all of this works more generally for S-modules.)
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Stanley Depth

Two Stanley decompositions of R = k[x , y ]/〈x2y〉:

yy

x x

Definition
The Stanley depth of S/I is

sdepthS/I = max
D

min{|Ai |}.

where D runs over all Stanley decompositions of S/I .



Depth Conjecture

Conjecture (Stanley ’82)

For all monomial ideals I , sdepthS/I ≥ depth S/I .

Theorem (Herzog, Jahan, Yassemi ’08)

If I∆ is the Stanley-Reisner ideal of a Cohen-Macaulay complex ∆,
then the inequality sdepthS/I∆ ≥ depth S/I∆ is equivalent to the
partitionability of ∆.

Corollary

Our counterexample disproves this conjecture as well.

Remark (Katthän)

Katthän computed (using an algorithm developed by Ichim and
Zarojanu) that sdepthC3 = 3 (and depthC3 = 4 since it is CM).

Similarly, sdepth k[Q5] = 3; depth k[Q5] = 4. So that is a much
smaller counterexample to the Depth Conjecture (for modules).
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