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Partitionability Conjecture

Richard Stanley: “. . . a central combinatorial conjecture on
Cohen-Macaulay complexes is the following.”

Conjecture (Stanley ’79; Garsia ’80)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM ’15)

No.

Stanley: “I am glad that this problem has finally been put to rest,
though I would have preferred a proof rather than a
counterexample. Perhaps you can withdraw your paper from the
arXiv and come up with a proof instead.”
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Counting faces of spheres

Definition (Sphere)

Simplicial complex whose realization is a triangulation of a sphere.

Definition (f -vector)

fi = fi (∆) = number of i-dimensional faces of ∆.

Conjecture (Upper Bound)

Explicit upper bound on fi of a sphere with given dimension and
number of vertices.

This was proved by Stanley in 1975. Some of the key ingredients:

I face-ring (algebraic object derived from the simplicial
complex) [Stanley, Hochster]

I face-ring of sphere is Cohen-Macaulay [Reisner]
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Cohen-Macaulay simplicial complexes

CM rings of great interest in commutative algebra (depth =
dimension). Here is a more topological/combinatorial definition.

Definition (Link)

lk∆ σ = {τ ∈ ∆: τ ∩ σ = ∅, τ ∪ σ ∈ ∆}, what ∆ looks like near σ.

Definition (Homology)

H̃i (∆) = ker ∂i / im ∂i+1, measures i-dimensional “holes” of ∆.

Theorem (Reisner ’76)

Face-ring of ∆ is Cohen-Macaulay if, for all σ ∈ ∆,

H̃i (lk∆ σ) = 0 for i < dim lk∆ σ.

We take this as our definition of CM simplicial complex.
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Cohen-Macaulayness is topological

Recall our definition:

Theorem (Reisner ’76)

Face-ring of ∆ is Cohen-Macaulay if, for all σ ∈ ∆,

H̃i (lk∆ σ) = 0 for i < dim lk∆ σ.

Munkres (’84) showed that CM is a topological condition. That is,
it only depends on (the homeomorphism class of) the realization of
∆. In particular, spheres and balls are CM.

Example

is not CM
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h-vector

The conditions for the UBC most easily stated in terms of h-vector.

Definition (h-vector)

Let dim ∆ = d − 1.

d∑
i=0

fi−1(t − 1)d−i =
d∑

k=0

hkt
d−k

Equivalently,
d∑

i=0

fi−1t
d−i =

d∑
k=0

hk(t + 1)d−k

The h-vector of ∆ is h(∆) = (h0, h1, . . . , hd). Coefficients not
always non-negative!
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Example
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4

f (∆) = (1, 5, 9, 6), and

1t3 + 5t2 + 9t + 6 = 1(t + 1)3 + 2(t + 1)2 + 2(t + 1)1 + 1

so h(∆) = (1, 2, 2, 1).

Note that in this case, h ≥ 0. This is a consequence of the
algebraic defn of CM. But how could we see this combinatorially?
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Partitionability

1t3 + 5t2 + 9t + 6 = 1(t + 1)3 + 2(t + 1)2 + 2(t + 1)1 + 1
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Definition (Partitionable)

When a simplicial complex can be partitioned like this, into
Boolean intervals whose tops are facets, we say the complex is
partitionable.



Partitionability

1t3 + 5t2 + 9t + 6 = 1(t + 1)3 + 2(t + 1)2 + 2(t + 1)1 + 1

124 134 234 125 135 235

352515231334122414

4 1 2 3

O

5

/

Definition (Partitionable)

When a simplicial complex can be partitioned like this, into
Boolean intervals whose tops are facets, we say the complex is
partitionable.



Shellability

Most CM complexes in combinatorics are shellable:

Definition (Shellable)

A simplicial complex is shellable if it can be built one facet at a
time, so that there is always a unique new minimal face being
added.

A shelling is a particular kind of partitioning.

Proposition

If ∆ is shellable, then hk counts number of intervals whose bottom
(the unique new minimal face) is dimension k − 1.

Example

In our previous example, minimal new faces were: ∅, vertex, edge,
vertex, edge, triangle.
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Relative simplicial complexes

Definition (Relative simplicial complex)

Φ is a relative simplicial complex on V if:

I Φ ⊆ 2V ; and

I ρ ⊆ σ ⊆ τ and ρ, τ ∈ Φ together imply σ ∈ Φ

We can write any relative complex Φ as Φ = (∆, Γ), for some pair
of simplicial complexes Γ ⊆ ∆.

But ∆ and Γ are not unique.

Example
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Relative Cohen-Macualay

Recall ∆ is CM when

H̃i (lk∆ σ) = 0 for i < lk∆ σ.

This generalizes easily:

Theorem (Stanley ’87)

Face-ring of Φ = (∆, Γ) is relative Cohen-Macaulay if, for all
σ ∈ ∆,

H̃i (lk∆ σ, lkΓ σ) = 0 for i < lk∆ σ.

Example
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Looking for a non-trivial example

We were trying to prove the conjecture.

Idea of our “proof”:

I Remove all the faces containing a given vertex (this will be
the first part of the partitioning).

I Try to make sure what’s left is relative CM.

I Apply induction.

I How hard is it to take that second step of the partitioning,
which is the first step for the relative complex?

I We wanted to find a non-trivial example of something CM
and partitionable, so we could see how it would work.

I Idea: non-trivial = not shellable; CM = ball (and if it’s not
partitionable, we’re done). So we are looking for non-shellable
balls.
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Ziegler’s non-shellable ball (’98)

Non-shellable 3-ball with 10 vertices and 21 tetrahedra

Just because it is partitionable does not mean you can start
partitioning in any order.
So we started to partition until we could not go any further
(without backtracking). This part uses the computer!
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First pass with Ziegler

We found a relative complex Q5 = (X5,A5)

I X5 has 6 vertices, 5 facets

I remove A5, which is 4 triangles on boundary

I relative CM (since X5 and A5 shellable, A5 ⊆ ∂X5)

I not partitionable

4578 1457 1458 1489 1589

478 457 458 147 145 148 149 158 189 159

47 45 14 18 19

If only we could build a non-relative complex out of this.
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Gluing

Proposition

If X and (X ,A) are CM and dimA = dimX − 1, then gluing
together two copies of X along A gives a CM (non-relative)
complex.

If we glue together two copies of X along A, is it partitionable?

Maybe: some parts of A can help partition one copy of X , other
parts of A can help partition the other copy of X .
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Pigeonhole principle

Recall our example (X ,A) is:

I relative Cohen-Macaulay

I not partitionable

I A vertex-induced (minimal faces of (X ,A) are vertices)

Remark
If we glue together many copies of X along A, at least one copy
will be missing all of A!

How many is enough? More than the
number of all faces in A. Then the result will not be partitionable.

Remark
But the resulting complex is not actually a simplicial complex
because of repeats. To avoid this problem, we need to make sure
that A is vertex-induced. This means every face in X among
vertices in A must be in A as well. (Minimal faces of (X ,A) are
vertices.)
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Eureka!

By computer search, we found that if

I Z is Ziegler’s 3-ball, and

I B = Z restricted to all vertices except 1,5,9 (B has 7 facets),

then Q = (Z ,B) satisfies all our criteria!

Also Q = (X ,A), where X has 14 facets, and A is 5 triangles:

3
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1249 1269
1569 1589
1489 1458
1457 4578
1256 0125
0256 0123
1234 1347
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Putting it all together

I Since A has 24 faces total (including the empty face), we
know gluing together 25 copies of X along their common copy
of A, the resulting (non-relative) complex C25 is CM, not
partitionable.

I In fact, computer search showed that gluing together only 3
copies of X will do it. Resulting complex C3 has f -vector
(1, 16, 71, 98, 42).

I Later we found short proof by hand to show that C3 works.
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Stanley depth (a brief summary)

Definition (Stanley)

If I is a monomial ideal in a polynomial ring S , then the Stanley
depth sdepth S/I is a purely combinatorial analogue of depth,
defined in terms of certain vector space decompositions of S/I .

Conjecture (Stanley ’82)

For all monomial ideals I , sdepthS/I ≥ depth S/I .

Theorem (Herzog, Jahan, Yassemi ’08)

If I is the Stanley-Reisner ideal (related to the face ring) of a
Cohen-Macaulay complex ∆, then the inequality
sdepthS/I ≥ depthS/I is equivalent to the partitionability of ∆.

Corollary

Our counterexample disproves this conjecture as well.



Constructibility

Definition
A d-dimensional simplicial complex ∆ is constructible if:

I it is a simplex; or

I ∆ = ∆1 ∪∆2, where ∆1,∆2,∆1 ∩∆2 are constructible of
dimensions d , d , d − 1, respectively.

Theorem
Constructible complexes are Cohen-Macaulay.

Question (Hachimori ’00)

Are constructible complexes partitionable?

Corollary

Our counterexample is constructible, so the answer to this question
is no.
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Open question: Smaller counterexample?

Open questions:
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Is there a smaller 3-dimensional counterexample to the
partitionability conjecture?

Question
Is the partitionability conjecture true in 2 dimensions?
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Save the conjecture: Strengthen the hypothesis

More open questions (based on what our counterexample is not):
Note that our counterexample is not a ball (3 balls sharing
common 2-dimensional faces), but all balls are CM.

Question
Are simplicial balls partitionable?

Definition (Balanced)

A simplicial complex is balanced if vertices can be colored so that
every facet has one vertex of each color.

Question
Are balanced Cohen-Macaulay complexes partitionable?
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Save the conjecture: Weaken the conclusion

Question
What does the h-vector of a CM complex count?

One possible answer (D.-Zhang ’01) replaces Boolean intervals
with “Boolean trees”. But maybe there are other answers.
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