Cuts and flows in cell complexes

Art Duval1 Caroline Klivans2 Jeremy Martin3

1University of Texas at El Paso
2Brown University
3University of Kansas

CombinaTexas 2012
Southwestern University
April 22, 2012
Critical groups, cuts, and flows

Theorem (Bacher, de la Harpe, Nagnibeda)

\[K(G) \cong \mathcal{C}^\# / \mathcal{C} \cong \mathcal{F}^\# / \mathcal{F} \cong \mathbb{Z}^{|E|} / (\mathcal{C} \oplus \mathcal{F}) \]

where \(G \) is a graph, \(K(G) \) is its critical group, \(\mathcal{C} \) is the cut lattice, and \(\mathcal{F} \) is the flow lattice.
Critical groups, cuts, and flows

Theorem (Bacher, de la Harpe, Nagnibeda)

$$K(G) \cong \mathcal{C}^\# / \mathcal{C} \cong \mathcal{F}^\# / \mathcal{F} \cong \mathbb{Z}^{\mid E \mid} / (\mathcal{C} \oplus \mathcal{F})$$

where G is a graph, $K(G)$ is its critical group, \mathcal{C} is the cut lattice, and \mathcal{F} is the flow lattice.

Theorem (DKM)

$$0 \to \mathbb{Z}^n / (\mathcal{C} \oplus \mathcal{F}) \to K(\Sigma) \cong \mathcal{C}^\# / \mathcal{C} \to T(\tilde{H}_{d-1}(\Sigma, \mathbb{Z})) \to 0$$

$$0 \to T(\tilde{H}^d(\Sigma, \mathbb{Z})) \to \mathbb{Z}^n / (\mathcal{C} \oplus \mathcal{F}) \to K^*(\Sigma) \cong \mathcal{F}^\# / \mathcal{F} \to 0$$

where Σ is a d-dimensional cell complex, $K(\Sigma)$ is its critical group, $K^*(\Sigma)$ is its cocritical group, \mathcal{C} is the cut lattice, \mathcal{F} is the flow lattice, and T denotes torsion (finite) part of an abelian group.
Cuts and bonds

Let \(G \) be a connected graph.

Definition
A cut is a collection of edges in \(G \) whose removal disconnects the graph.

Example

![Diagram of a graph with a cut highlighted]
Cuts and bonds

Let G be a connected graph

Definition

A *cut* is a collection of edges in G whose removal disconnects the graph; a *bond* is a minimal cut.

Example

![Graph example](image-url)
Cuts and bonds

Let G be a connected graph

Definition
A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

Example
Cuts and bonds

Let G be a connected graph

Definition
A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

Example

![Graph examples](image)

Remark
Using matroid language, bonds are cocircuits.
Cut space

The vertex star of every vertex is a cut;
Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, $\text{im } \partial^*$, i.e., row-span of boundary [incidence] matrix.
Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, $\text{im} \partial^*$, i.e., row-span of boundary [incidence] matrix.

Example

\[
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1
\end{pmatrix}
\]

Sum of first two rows (∂^* of north shore) is supported on bond.
Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, $\text{im} \, \partial^*$, i.e., row-span of boundary [incidence] matrix.

Example

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 \\
\end{bmatrix}
\]

Sum of first two rows (∂^* of north shore) is supported on bond.

Question

What is a basis?
Fundamental bond

Definition

Given a spanning tree T

Example

![Diagram](image)
Fundamental bond

Definition
Given a spanning tree T and an edge $e \in T$, the fundamental bond is the unique bond containing e, and no other edge from T.

Example

![Example Image]

Theorem
For a fixed spanning tree, the collection of fundamental bonds forms a basis of cut space.
Fundamental bond

Definition
Given a spanning tree T and an edge $e \in T$, the fundamental bond is the unique bond containing e, and no other edge from T.

Example

![Example Diagram]

Theorem

For a fixed spanning tree, the collection of fundamental bonds forms a basis of cut space.
Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.
Flows and circuits

Definition
A circuit is a closed path with no repeated vertices.
In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define...
Flows and circuits

Definition
A circuit is a closed path with no repeated vertices.

In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

Definition
Flow space of G is kernel of boundary matrix
Flows and circuits

Definition
A circuit is a closed path with no repeated vertices.
In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

Definition
Flow space of G is kernel of boundary matrix

Question
What is a basis?
Fundamental circuit

Definition
Given a spanning tree T

Example
Fundamental circuit

Definition
Given a spanning tree T and an edge $e \not\in T$, the fundamental circuit is the unique circuit in $T \cup \{e\}$.

Example

- ![Diagram of a fundamental circuit](image)

Theorem
For a fixed spanning tree, the collection of fundamental circuits forms a basis of flow space.

Duval, Klivans, Martin
Cuts and flows in cell complexes
Fundamental circuit

Definition
Given a spanning tree T and an edge $e \not\in T$, the fundamental circuit is the unique circuit in $T \cup \{e\}$.

Example

![Graphs](image1.png)

Theorem
For a fixed spanning tree, the collection of fundamental circuits forms a basis of flow space.
Cell complexes

Definition
A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions),
Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.
Cell complexes

Definition
A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

Think the boundary of each facet being a \mathbb{Z}-linear combination of ridges.

Remark
Any \mathbb{Z} matrix can be the boundary matrix of a cell complex.
Examples

2 3 0 0
0 0 5 7
0 2 2
1 0 0
−1 2 0
Cellular matroids

- Matroid whose elements are columns of boundary matrix
Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix
Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix
- Bases?...
Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:

$\Upsilon_{(d-1)} = X_{(d-1)}$ (same $(d-1)$-skeleton),
Spanning forests (Bolker; Kalai; DKM)

A **Cellular spanning forest (CSF)** is $\Upsilon \subset X$ such that:

$\Upsilon_{(d-1)} = X_{(d-1)}$ (same $(d-1)$-skeleton), and

- $\tilde{H}_d(\Upsilon; \mathbb{Q}) = 0$ and $\tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = \tilde{H}_{d-1}(X; \mathbb{Q})$
Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:
$\Upsilon_{(d-1)} = X_{(d-1)}$ (same $(d-1)$-skeleton), and

- $\tilde{H}_d(\Upsilon; \mathbb{Q}) = 0$ and $\tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = \tilde{H}_{d-1}(X; \mathbb{Q})$
- Equivalently, $\{\partial F : F \in \Upsilon\}$ is a vector space basis for $\text{im}\ \partial$
Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is \(\gamma \subset X \) such that:
\[\gamma_{(d-1)} = X_{(d-1)} \] (same \((d-1)\)-skeleton), and

1. \(\tilde{H}_d(\gamma; \mathbb{Q}) = 0 \) and \(\tilde{H}_{d-1}(\gamma; \mathbb{Q}) = \tilde{H}_{d-1}(X; \mathbb{Q}) \)

2. Equivalently, \(\{ \partial F : F \in \gamma \} \) is a vector space basis for \(\text{im} \partial \)
Cut space and bonds

Definition

i-dimensional cut space of cell complex X is

$$\text{Cut}_i(X) = \text{im}(\partial^*_i : C_{i-1}(X, \mathbb{R}) \to C_i(X, \mathbb{R})).$$

Remark

Cut space is the rowspace of the boundary matrix.
Definition
i-dimensional cut space of cell complex X is

$$\text{Cut}_i(X) = \text{im}(\partial_i^* : C_{i-1}(X, \mathbb{R}) \to C_i(X, \mathbb{R})).$$

A bond of X is a minimal set of i-faces that support non-0 vector of $\text{Cut}_i(X)$

Remark
Cut space is the rowspace of the boundary matrix.

Remark
Bonds are the cocircuits of cellular matroid
Topological interpretation of bonds

Remark
Bonds are minimal for increasing \((i-1)\)-dimensional homology instead of decreasing \(i\)-dimensional homology

Examples
Characteristic vectors of bonds

Fix bond B

Proposition

\[\text{Cut}_B(X) := (\{0\} \cup (\text{Cut}_i(X) \cap \{v : \text{supp}(v) = B\})) \text{ is 1-dimensional} \]

Example
Topological interpretation of characteristic vector

Example

If $B = \{F_5, F_7\}$, then Cut_B spanned by $5F_5 + 7F_7$.
Topological interpretation of characteristic vector

Example

If $B = \{F_5, F_7\}$, then Cut_B spanned by $5F_5 + 7F_7$.

Theorem (DKM)

Let A be a cellular spanning forest of X/B. Then $\text{Cut}_B(X)$ is spanned by

$$\chi(B, A) := \sum_{F \in B} \pm |\tilde{H}(A \cup F, \mathbb{Z})|F$$
Topological interpretation of characteristic vector

Example

If $B = \{F_5, F_7\}$, then $\chi(B, F_2) = 2(5F_5 + 7F_7)$, but $\chi(B, F_3) = 3(5F_5 + 7F_7)$.

Theorem (DKM)

Let A be a cellular spanning forest of X/B. Then $\text{Cut}_B(X)$ is spanned by

$$\chi(B, A) := \sum_{F \in B} \pm |\tilde{H}(A \cup F, \mathbb{Z})|F$$

Definition

The characteristic vector of B is $\chi(B, A)$
Fundamental bond

Definition
Given a spanning forest Υ and an face $F \in \Upsilon$, the **fundamental bond** is the unique bond containing F, and no other face from Υ.

Example

\[
\begin{array}{c|c}
F & B \\
--- & --- \\
124 & \{124, 234\} \\
134 & \{124, 134\} \\
123 & \{234, 123, 125\} \\
135 & \{125, 135\} \\
235 & \{125, 235\}
\end{array}
\]
Fundamental bond

Definition

Given a spanning forest Υ and an face $F \in \Upsilon$, the **fundamental bond** is the unique bond containing F, and no other face from Υ.

Example

\[
\Upsilon = \{124, 134, 123, 135, 235\}
\]

<table>
<thead>
<tr>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>${124, 234}$</td>
</tr>
<tr>
<td>134</td>
<td>${124, 134}$</td>
</tr>
<tr>
<td>123</td>
<td>${234, 123, 125}$</td>
</tr>
<tr>
<td>135</td>
<td>${125, 135}$</td>
</tr>
<tr>
<td>235</td>
<td>${125, 235}$</td>
</tr>
</tbody>
</table>

Theorem (DKM)

For a fixed spanning forest, the collection of characteristic vectors of fundamental bonds forms a basis of cut space.
Flows and circuits

Definition

i-dimensional flow space of cell complex X is

$$\text{Flow}_i(X) = \ker(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$
Flows and circuits

Definition

i-dimensional flow space of cell complex X is

$$\text{Flow}_i(X) = \ker(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

A circuit of X is a minimal set of i-faces that support non-0 vector of $\text{Flow}_i(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.
Flows and circuits

Definition

i-dimensional flow space of cell complex X is

$$\text{Flow}_i(X) = \ker(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

A circuit of X is a minimal set of i-faces that support non-0 vector of $\text{Flow}_i(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Example

Bipyramid
Characteristic vectors of circuits

Fix circuit C

Proposition

$Flow_C(X) := (\{0\} \cup (Flow_i(X) \cap \{v : \text{supp}(v) = C\}))$ is 1-dimensional

Example

Bipyramid
Topological interpretation of characteristic vector

Example

\[\begin{array}{ccc}
2 & 2 & 1 \\
1 & 0 & -2 \\
-1 & 2 & 0
\end{array} \]

\[\begin{array}{ccc}
0 & -2 & 2 \\
1 & 0 & -2 \\
-1 & 2 & 0
\end{array} \]

Theorem (DKM)

\[\chi(C) = \sum_{F \in C} \pm |T \tilde{H}(C \setminus F, \mathbb{Z})| \]

Definition

The characteristic vector of \(C \) is \(\chi(C) \).
Topological interpretation of characteristic vector

Example

\[
\begin{pmatrix}
2 & 2 & 1 \\
0 & -2 & 2 \\
1 & 0 & -2 \\
-1 & 2 & 0
\end{pmatrix}
\]

Theorem (DKM)

\[
\chi(C) = \sum_{F \in C} \pm |T\tilde{H}(C \setminus F, \mathbb{Z})|F
\]

spans \(\text{Cut}_C(X) \), where \(T \) stands for torsion part.
Topological interpretation of characteristic vector

Example

\[\begin{array}{ccc}
2 & 2 & 1 \\
0 & -2 & 2 \\
1 & 0 & -2 \\
-1 & 2 & 0 \\
\end{array} \]

\[\tilde{H}(C \setminus F_1) = \mathbb{Z} \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2) ; \]

Theorem (DKM)

\[\chi(C) = \sum_{F \in C} \pm |T \tilde{H}(C \setminus F, \mathbb{Z})|F \]

spans \(\text{Cut}_C(X) \), where \(T \) stands for torsion part.
Topological interpretation of characteristic vector

Example

\[\begin{bmatrix}
2 & 2 & 1 \\
0 & -2 & 2 \\
1 & 0 & -2 \\
-1 & 2 & 0
\end{bmatrix}; \quad \tilde{H}(C \setminus F_1) = \mathbb{Z} \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2); \quad \chi(C) = (4, 2, 2)\]

Theorem (DKM)

\[\chi(C) = \sum_{F \in C} \pm |T \tilde{H}(C \setminus F, \mathbb{Z})| F\]

spans \text{Cut}_C(X), where \textbf{T} stands for torsion part.

Definition

The characteristic vector of \(C \) is \(\chi(C) \)
Fundamental circuit

Definition
Given a spanning forest Υ and an face $F \not\in \Upsilon$, the fundamental circuit is the unique circuit in $\Upsilon \cup \{F\}$.

Example

$\Upsilon = \{124, 134, 123, 135, 235\}$

<table>
<thead>
<tr>
<th>F</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>${123, 124, 134, 234}$</td>
</tr>
<tr>
<td>235</td>
<td>${123, 125, 135, 235}$</td>
</tr>
</tbody>
</table>
Fundamental circuit

Definition
Given a spanning forest \(\Upsilon \) and an face \(F \not\in \Upsilon \), the fundamental circuit is the unique circuit in \(\Upsilon \cup \{F\} \).

Example
\[
\begin{align*}
\Upsilon &= \{124, 134, 123, 135, 235\} \\
F &\quad C \\
234 &\quad \{123, 124, 134, 234\} \\
235 &\quad \{123, 125, 135, 235\}
\end{align*}
\]

Theorem (DKM)
For a fixed spanning forest, the collection of characteristic vectors of fundamental circuits forms a basis of flow space.