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Arrangements

Braid Bn := {xi = xj

, xi = xj + 1

: 1 ≤ i < j ≤ n} n! regions

Shi Sn := {xi = xj , xi = xj + 1: 1 ≤ i < j ≤ n} (n + 1)n−1 regions

1= x3

x1= x

x

x2x = 3

2

(n + 1)n−1 is also the number of spanning trees of Kn (Cayley)
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Parking functions

Definition

I parking spots 0, . . . , n − 1

I cars 1, . . . , n arrive in order

I car i has favorite parking spot f (i)

I car i goes first to spot f (i) . . .

I . . . if that spot is full, takes next available spot

If such a function f allows all the cars to park, it is a parking
function. [Note that indexing is sometimes different.]

Example

1120

0123
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Definition

I parking spots 0, . . . , n − 1

I cars 1, . . . , n arrive in order

I car i has favorite parking spot f (i)

I car i goes first to spot f (i) . . .
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Which functions are parking functions?

0123

Example

Easy: All 0’s;

any permutation of 0, . . . , n − 1.

Example

These are not parking functions: 3003, 2230, 1121

Necessary: Fewer than i cars whose value is greater than n − i
Equivalently, when values f (i) rearranged in increasing order,
f (i) < i . (f is “componentwise” less than permutation of
0, . . . , n − 1.)
This is sufficient, too (making values less only makes it easier to
park).
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How many are there?

n=2: 00, 01, 10

n=3: 000, 001, 010, 100, 011, 101, 110, 002, 020, 200, 012, 021,
102, 120, 201, 210

Theorem (Pyke, ’59; Konheim and Weis, ’66)

There are (n + 1)n−1 parking functions.
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Pak-Stanley labelling
Pak and Stanley found a labelling of the regions of the Shi
arrangement so that each region gets a different label,

and each
label is a parking function!

120

002

101
210102

x

012

1= x3+1x1= x3

x1= x2

x1= x2+1

x2x = 3 = x3+1x2


000

001 100

010

201
200

110

020

021

011

Athanasiadis and Linusson have alternate (easier) bijection
between parking functions and Shi regions.
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Restating parking function definition

Recall the original necessary and sufficient condition:

Fewer than i cars whose value is greater than n − i .

Restate this as:

In any set of i cars,
there is at least one whose value is at most n−i .
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G -parking functions

Definition (Postnikov-Shapiro ’04)

Given a graph G = (V , E ),

with root q

, a function f : V

\q

→ Z≥0

is a parking function if, in any set U ⊆ V

\ q

of vertices, there is
at least one vertex v such that f (v) is at most the Ū-degree of v ,
the number of neighbors of v outside of U.

1
4

1
3

2

Note that if G = Kn+1 we get classical parking functions on n cars.
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Spanning Trees

Theorem (Postnikov-Shapiro)

#{G -parking functions} = #{spanning trees of G ∗ 0}.

0

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
0 2 0
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Graphical arrangement
Start with braid arrangement, but include only hyperplanes
corresponding to edges in graph:

{xi = xj : i < j ; {i , j} ∈ E}

Example

3

2

1
1= x2

x

x

x = 32
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G -Shi arrangement
If we combine the ideas of the graphical arrangement and the Shi
arrangement, we get

{xi = xj , xi = xj + 1: i < j ; {i , j} ∈ E}

1= x2

x1= x2+1

x2x = 3 = x3+1x2


x

But this has 9 regions, and there are only 8 spanning trees and 8
parking functions.
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Conjecture

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
0 2 0

1= x2

x1= x2+1

x2x = 3 = x3+1x2


x

Conjecture

There is a bijection between the (G ∗ 0)-parking functions and the
set of different labels of the G -Shi arrangement.
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Conjecture

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
0 2 0

010

100

000001

101

020
x

110

1= x2

x1= x2+1

x2x = 3 = x3+1x2


010011

Conjecture

There is a bijection between the (G ∗ 0)-parking functions and the
set of different labels of the G -Shi arrangement.
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Proof?

Maximal labels in G -Shi

What are the maximal labels (maximum total weight) of the G -Shi
arrangement?

The regions can’t be in any of the “middle slices”

010

100

000001

101

020
x

110

1= x2

x1= x2+1

x2x = 3 = x3+1x2


010011
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Maximal labels in G -Shi

What are the maximal labels (maximum total weight) of the G -Shi
arrangement?
The regions can’t be in any of the “middle slices”

2

x1= x2+1

x2x = 3 = x3+1x2


010011

010

100

000001

101

020
x

110

1= x
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Proof?

Graphical arrangement

2

x1= x2+1

x2x = 3 = x3+1x2


010011

010

100

000001

101

020
x

110

1= x

For every pair of parallel hyperplanes (corresponding to edge in
graph), you have to be on one side or the other:

Graphical
arrangement!
Weight goes up by one for every hyperplane crossed, so total
weight is number of edges of G .
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Proof?

Acyclic orientations

1= x2

x2x = 3

x

Regions of graphical arrangement correspond to acyclic
orientations on graph (just like regions of braid arrangement
correspond to permutations, which correspond to acyclic
orientations of the complete graph).
So there is a natural bijection between maximal labels of the G -Shi
arrangement and acyclic orientations of G .
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Example: Kn again

120

002

101
210102

x

012

1= x3+1x1= x3

x1= x2

x1= x2+1

x2x = 3 = x3+1x2


000

001 100

010

201
200

110

020

021

011
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Example: Kn again

+1x1= x3

x1= x2

x1= x2+1

x2x = 3 = x3+1x2


000

001 100

010

201
200

110

020

021

011

120

002

012

101
210

x

102

1= x3
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Proof?

Maximal G -parking functions

Theorem (Benson, Chakrabarty, Tetali, ’10)

Maximal (G ∗ 0)-parking functions also have weight equal to the
number of edges of G, and correspond to acyclic orientations of G .

Observation (Easy)

If f is a G -parking function, and g(v) ≤ f (v) for all v , then g is
also a G-parking function

Proof.
Reducing the values of the parking function can only make it easier
to satisfy the condition.

Consequence: If we could only show that labels also satisfy the
easy observation, we’d be done.
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number of edges of G, and correspond to acyclic orientations of G .

Observation (Easy)

If f is a G -parking function, and g(v) ≤ f (v) for all v , then g is
also a G-parking function

Proof.
Reducing the values of the parking function can only make it easier
to satisfy the condition.

Consequence: If we could only show that labels also satisfy the
easy observation, we’d be done.
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Half the bijection

We can use this to easily show that every label g has a
corresponding parking function:
There exists some maximal label f such that g(v) ≤ f (v) for all v
(g = f is possible). Since f is maximal, it corresponds to an
acyclic orientation O. By BCT, we know O corresponds to a
maximal parking function, so f is a maximal parking function. By
the easy observation, g is also a parking function.
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What about the other half?

We still need to show either [equivalently]:

I Every parking function is a label

I Labels satisfy the easy observation
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