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Partitionability Conjecture

Richard Stanley: “. . . a central combinatorial conjecture on
Cohen-Macaulay complexes is the following.”

Conjecture (Stanley ’79; Garsia ’80)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM ’16)

No.

Stanley: “I am glad that this problem has finally been put to rest,
though I would have preferred a proof rather than a
counterexample. Perhaps you can withdraw your paper from the
arXiv and come up with a proof instead.”
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Stanley depth

Definition (Stanley)

Let S = k[x1, . . . , xn], and let M be a Zn-graded S-module. Then
sdepthM denotes the Stanley depth of M.

Conjecture (Stanley ’82)

sdepthM ≥ depthM

Theorem (Herzog, Jahan, Yassemi ’08)

If I∆ is the Stanley-Reisner ideal of a Cohen-Macaulay complex ∆,
then the inequality sdepthS/I∆ ≥ depth S/I∆ is equivalent to the
partitionability of ∆.

Corollary (DGKM ’16)

Our counterexample disproves this conjecture as well.
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Simplicial complexes

Definition (Simplicial complex)

Let V be set of vertices. Then ∆ is a simplicial complex on V if:

I ∆ ⊆ 2V ; and

I if σ ⊆ τ ∈ ∆ implies τ ∈ ∆.

Higher-dimensional analogue of graph.

Definition (f -vector)

fi = fi (∆) = number of i-dimensional faces of ∆. The f -vector of
(d − 1)-dimensional ∆ is

f (∆) = (f−1, f0, f1, . . . , fd−1)
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124, 125, 134, 135, 234, 235;
12, 13, 14, 15, 23, 24, 25, 34, 35;
1, 2, 3, 4, 5;
∅

f (∆) = (1, 5, 9, 6)



Counting faces of spheres

Definition (Sphere)

Simplicial complex whose realization is a triangulation of a sphere.

Conjecture (Upper Bound)

Explicit upper bound on fi of a sphere with given dimension and
number of vertices.

This was proved by Stanley in 1975.

Key ingredient:

Definition (Stanley-Reisner face-ring)

Assume ∆ has vertices 1, . . . , n. Define xF =
∏

j∈F xj . Define I∆
to be the ideal I∆ = 〈xF : F 6∈ ∆〉. The Stanley-Reisner face-ring is

k[∆] = k[x1, . . . , xn]/I∆.
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Hilbert series

k[∆] = k[x1, . . . , xn]/I∆ = k[x1, . . . , xn]/〈xF : F 6∈ ∆〉.

So, for the Hilbert series,

F (k[∆], λ) =
∑
α∈Zn

dimk(k[∆]α)tα

=
∑
σ∈∆

∏
j∈σ

tj
1− tj

=
d−1∑
i=−1

fi t
i+1

(1− t)i+1
=

∑d
k=0 hkt

k

(1− t)d

This means
d∑

i=0

fi−1(t − 1)d−i =
d∑

k=0

hkt
d−k

The h-vector of ∆ is h(∆) = (h0, h1, . . . , hd). Coefficients not
always non-negative!
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Cohen-Macaulay complexes

Definition (Cohen-Macaulay ring)

A ring R is Cohen-Macaulay when dimR = depthR.

In our setting dimk[∆] = dimk[x1, . . . , xn]/I∆ = d .

Definition (Depth)

(θ1, . . . , θr ) is a regular sequence of module M if θi+1 is non-zero
divisor of M/(θ1M + · · ·+ θiM); equivalently, θ1, . . . , θr alg. ind.
over k and M is free k[θ1, . . . , θr ]-module. Then depthM is the
length of the longest regular sequence of M.

Definition (Cohen-Macaulay simplicial complex)

A simplicial complex ∆ is Cohen-Macaulay when k[∆] is.

Remark
The h-vector is non-negative for Cohen-Macaulay complexes.
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Combinatorics and Topology

Definition (Link)

lk∆ σ = {τ ∈ ∆: τ ∩ σ = ∅, τ ∪ σ ∈ ∆}, what ∆ looks like near σ.

Definition (Homology)

H̃i (∆) = ker ∂i / im ∂i+1, measures i-dimensional “holes” of ∆.

Theorem (Reisner ’76)

Face-ring of ∆ is Cohen-Macaulay if, for all σ ∈ ∆,

H̃i (lk∆ σ) = 0 for i < dim lk∆ σ.

Munkres (’84) showed that CM is a topological condition. That is,
it only depends on (the homeomorphism class of) the realization of
∆. In particular, spheres and balls are CM.

Example

is not CM
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h-vector

Recall
d∑

i=0

fi−1(t − 1)d−i =
d∑

k=0

hkt
d−k ; so

d∑
i=0

fi−1t
d−i =

d∑
k=0

hk(t + 1)d−k .

Example

2

3

1

5

4

f (∆) = (1, 5, 9, 6), and

1t3+5t2+9t+6 = 1(t+1)3+2(t+1)2+2(t+1)1+1

so h(∆) = (1, 2, 2, 1).



Partitionability

1t3 + 5t2 + 9t + 6 = 1(t + 1)3 + 2(t + 1)2 + 2(t + 1)1 + 1

5

/

124 134 234 125 135 235

352515231334122414

4 1 2 3

O

Definition (Partitionable)

When a simplicial complex can be partitioned like this, into
Boolean intervals whose tops are facets, we say the complex is
partitionable.
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Shellability

Most CM complexes in combinatorics are shellable:

Definition (Shellable)

A simplicial complex is shellable if it can be built one facet at a
time, so that there is always a unique new minimal face being
added.

A shelling is a particular kind of partitioning.

Proposition

If ∆ is shellable, then hk counts number of intervals whose bottom
(the unique new minimal face) is dimension k − 1.

Example

In our previous example, minimal new faces were: ∅, vertex, edge,
vertex, edge, triangle.
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We were trying to prove the conjecture

Idea of our “proof”:

I Remove all the faces containing a given vertex (this will be
the first part of the partitioning).

I Try to make sure what’s left is relative CM.

I Apply induction.

The problem is we would have to prove the conjecture for relative
CM complexes.
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Relative simplicial complexes

Definition (Relative simplicial complex)

Φ is a relative simplicial complex on V if:

I Φ ⊆ 2V ; and

I ρ ⊆ σ ⊆ τ and ρ, τ ∈ Φ together imply σ ∈ Φ

We can write any relative complex Φ as Φ = (∆, Γ), for some pair
of simplicial complexes Γ ⊆ ∆.

But ∆ and Γ are not unique.

Example



Relative simplicial complexes

Definition (Relative simplicial complex)

Φ is a relative simplicial complex on V if:

I Φ ⊆ 2V ; and

I ρ ⊆ σ ⊆ τ and ρ, τ ∈ Φ together imply σ ∈ Φ

We can write any relative complex Φ as Φ = (∆, Γ), for some pair
of simplicial complexes Γ ⊆ ∆. But ∆ and Γ are not unique.

Example



Relative Cohen-Macualay

Recall ∆ is CM when

H̃i (lk∆ σ) = 0 for i < lk∆ σ.

This generalizes easily:

Theorem (Stanley ’87)

Face-ring of Φ = (∆, Γ) is relative Cohen-Macaulay if, for all
σ ∈ ∆,

H̃i (lk∆ σ, lkΓ σ) = 0 for i < lk∆ σ.

Example
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Looking for a non-trivial example

Still trying to prove conjecture:

I We wanted to find a non-trivial example of something
Cohen-Macaulay and partitionable, so we could see how this
idea of relative complexes would work.

I How hard is it to take that second step of the partitioning,
which is the first step for the relative complex?

I Idea: non-trivial = not shellable; CM = ball (and if it’s not
partitionable, we’re done). So we are looking for non-shellable
balls.
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Ziegler’s non-shellable ball (’98)

Non-shellable 3-ball with 10 vertices and 21 tetrahedra

Just because it is partitionable does not mean you can start
partitioning in any order.
So we started to partition until we could not go any further
(without backtracking). This part uses the computer!
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First pass with Ziegler

We found a relative complex Q5 = (X5,A5)

I X5 has 6 vertices, 5 facets

I remove A5, which is 4 triangles on boundary

I relative CM (since X5 and A5 shellable, A5 ⊆ ∂X5)

I not partitionable
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478 457 458 147 145 148 149 158 189 159

47 45 14 18 19
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Gluing

Proposition

If X and (X ,A) are CM and dimA = dimX − 1, then gluing
together two copies of X along A gives a CM (non-relative)
complex.

If we glue together two copies of X along A, is it partitionable?

Maybe it is: some parts of A can help partition one copy of X ,
other parts of A can help partition the other copy of X .
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Pigeonhole principle

Recall our example (X ,A) is:

I relative Cohen-Macaulay

I not partitionable

I A vertex-induced (minimal faces of (X ,A) are vertices)

Remark
If we glue together many copies of X along A, at least one copy
will be missing all of A!

How many is enough? More than the
number of all faces in A. Then the result will not be partitionable.

Remark
But the resulting complex is not actually a simplicial complex
because of repeats. To avoid this problem, we need to make sure
that A is vertex-induced. This means every face in X among
vertices in A must be in A as well. (Minimal faces of (X ,A) are
vertices.)
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Pigeonhole principle

Need our example (X ,A) to be:

I relative Cohen-Macaulay

I not partitionable
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Eureka!

By computer search, we found that if

I Z is Ziegler’s 3-ball, and

I B = Z restricted to all vertices except 1,5,9 (B has 7 facets),

then Q = (Z ,B) satisfies all our criteria!

Also Q = (X ,A), where X has 14 facets, and A is 5 triangles:

3

7

0

4

2

8

6

1

5

9
1249 1269
1569 1589
1489 1458
1457 4578
1256 0125
0256 0123
1234 1347



Eureka!

By computer search, we found that if

I Z is Ziegler’s 3-ball, and

I B = Z restricted to all vertices except 1,5,9 (B has 7 facets),

then Q = (Z ,B) satisfies all our criteria!
Also Q = (X ,A), where X has 14 facets, and A is 5 triangles:

3

7

0

4

2

8

6

1

5

9
1249 1269
1569 1589
1489 1458
1457 4578
1256 0125
0256 0123
1234 1347



Putting it all together

I Since A has 24 faces total (including the empty face), we
know gluing together 25 copies of X along their common copy
of A, the resulting (non-relative) complex C25 is CM, not
partitionable.

I In fact, computer search showed that gluing together only 3
copies of X will do it. Resulting complex C3 has f -vector
(1, 16, 71, 98, 42).

I Later we found short proof by hand to show that C3 works.
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Stanley Decompositions

Definition
Let S = k[x1, . . . , xn]; µ ∈ S a monomial; and A ⊆ {x1, . . . , xn}.
The corresponding Stanley space in S is the vector space

µ · k[A] = k- span{µν : supp(ν) ⊆ A}.

Let I ⊆ S be a monomial ideal. A Stanley decomposition of S/I is
a family of Stanley spaces

D = {µ1 · k[A1], . . . , µr · k[Ar ]} such that

S/I =
r⊕

i=1

µi · k[Ai ].

(And all of this works more generally for S-modules.)
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Stanley Depth

Two Stanley decompositions of R = k[x , y ]/〈x2y〉:

yy

x x

Definition
The Stanley depth of S/I is

sdepthS/I = max
D

min{|Ai |}.

where D runs over all Stanley decompositions of S/I .



Depth Conjecture

Conjecture (Stanley ’82)

For all monomial ideals I , sdepthS/I ≥ depth S/I .

Theorem (Herzog, Jahan, Yassemi ’08)

If I∆ is the Stanley-Reisner ideal of a Cohen-Macaulay complex ∆,
then the inequality sdepthS/I∆ ≥ depth S/I∆ is equivalent to the
partitionability of ∆.

Corollary

Our counterexample disproves this conjecture as well.



Computations, and a new conjecture

Remark (Katthän)

Katthän computed (using the algorithm developed by Ichim and
Zarojanu) that sdepthC3 = 3 (and depthC3 = 4 since it is CM).

Similarly, sdepth k[Q5] = 3; depth k[Q5] = 4. So that is a much
smaller counterexample to the Depth Conjecture (for modules).

Conjecture (Katthän)

sdepth ≥ depth−1

Remark
Katthän was working on this conjecture even before our
counterexample.
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Constructibility

Definition
A d-dimensional simplicial complex ∆ is constructible if:

I it is a simplex; or

I ∆ = ∆1 ∪∆2, where ∆1,∆2,∆1 ∩∆2 are constructible of
dimensions d , d , d − 1, respectively.

Theorem
Constructible complexes are Cohen-Macaulay.

Question (Hachimori ’00)

Are constructible complexes partitionable?

Corollary

Our counterexample is constructible, so the answer to this question
is no.
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Open question: Smaller counterexample?

Open questions:

Question
Is there a smaller 3-dimensional counterexample to the
partitionability conjecture?

Question
Is the partitionability conjecture true in 2 dimensions?
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Save the conjecture: Strengthen the hypothesis

More open questions (based on what our counterexample is not):
Note that our counterexample is not a ball (3 balls sharing
common 2-dimensional faces), but all balls are CM.

Question
Are simplicial balls partitionable?

Definition (Balanced)

A simplicial complex is balanced if vertices can be colored so that
every facet has one vertex of each color.

Question
Are balanced Cohen-Macaulay complexes partitionable?
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Save the conjecture: Weaken the conclusion

Question
What does the h-vector of a CM complex count?

One possible answer (D.-Zhang ’01) replaces Boolean intervals
with “Boolean trees”. But maybe there are other answers.
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