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Abstract. This is a bibliography to accompany the slides from my talk at

the AMS Regional Meeting at Binghamton University in October, 2003.

In general, a reference in the slides with a name and date has an obvious unique
corresponding entry in the bibliography. Exceptions, and a few further explana-
tions, are given below, organized by slide number.

Slide 6: One place to find an exposition of the idea that shifted complexes are
“iterated near-cones”is [DRo00].

Slide 7: The basics of non-pure shellability are in [BW96], but also see [BW97],
for instance for the canonical shelling of a shifted complex.

Slide 8: Exterior algebraic shifting goes back to [Ka84], though the best exposi-
tions may be [BK88], where I first read of it, or [Ka02], which contains (or at least
seems to contain) everything that Gil Kalai knows or suspects to be true about al-
gebraic shifting, including some brief historical notes. An earlier version of [Ka02]
is [Ka93].

Slide 9: Herzog’s survey [He02] is probably a good place to start with symmetric
shifting, including the cases where the ideal I is not squarefree monomial, i.e., does
not come from a simplicial complex. The three papers [AH00, AHH00a, AHH00b]
represent just the (combinatorial) tip of the iceberg of work on generic initial ideals
with the revlex order.

Slide 10: Kalai [Ka02] lists more “axioms” [Ka02, Theorems 2.1 and 2.2], and
a more extensive example [Ka02, Example 2.4] of how to use them to figure out
the algebraic shift of a complex. That “axiom” 5 follows from the four previous
“axioms” I learned from a talk by Isabella Novik.

Slide 11: The “earlier version” due to Kalai is from [Ka93], and may be found
in [Ka02, Section 4.3].

Slide 21: Kook and Reiner made their conjecture based on one example in a
coffeehouse. I learned of it through personal communication. The theorem at the
bottom of this slide, as well as the theorem at the bottom of slide 22, is from [Du03].

Slides 23 and 24: Theorems about integrality are from [DRe02], and theorems
about “spectrality” are from [Du03].
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