Simplicial spanning trees

Art Duval1 \hspace{0.5cm} Caroline Klivans2 \hspace{0.5cm} Jeremy Martin3

1University of Texas at El Paso
2University of Chicago
3University of Kansas

4th Joint UTEP/NMSU Workshop on Mathematics, Computer Science, and Computational Sciences
University of Texas at El Paso
November 8, 2008
Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees.

A spanning tree T is a set of edges containing all vertices and:

1. connected ($\tilde{H}_0(T) = 0$)
2. no cycles ($\tilde{H}_1(T) = 0$)
3. $|T| = n - 1$

Note: Any two conditions imply the third.
Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees.

T spanning tree: set of edges containing all vertices and

1. connected ($\tilde{H}_0(T) = 0$)
2. no cycles ($\tilde{H}_1(T) = 0$)
3. $|T| = n - 1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly ($n^{n-2}(x_1 \cdots x_n)$)
Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees.

T spanning tree: set of edges containing all vertices and

1. connected ($\tilde{H}_0(T) = 0$)
2. no cycles ($\tilde{H}_1(T) = 0$)
3. $|T| = n - 1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly ($n^{n-2}(x_1 \cdots x_n)$)

edges? No nice structure (can’t see n^{n-2})
Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees.

T spanning tree: set of edges containing all vertices and

1. connected ($\tilde{H}_0(T) = 0$)
2. no cycles ($\tilde{H}_1(T) = 0$)
3. $|T| = n - 1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly ($n^{n-2}(x_1 \cdots x_n)$)

edges? No nice structure (can’t see n^{n-2})

both! $\text{wt } T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v)$ Prüfer coding
Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees.

T spanning tree: set of edges containing all vertices and

1. connected ($\tilde{H}_0(T) = 0$)
2. no cycles ($\tilde{H}_1(T) = 0$)
3. $|T| = n - 1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly ($n^{n-2}(x_1 \cdots x_n)$)

edges? No nice structure (can’t see n^{n-2})

both! \[\text{wt } T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} \left(\prod_{v \in e} x_v \right) \] Prüfer coding

\[\sum_{T \in ST(K_n)} \text{wt } T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2} \]
Example: K_4

4 trees like:

$T = (x_1x_2x_3x_4)x_2^2$
Example: K_4

- 4 trees like: $T = \begin{array}{c}
\text{1} \\
\text{3} \\
\text{2} \\
\end{array}$

 wt $T = (x_1x_2x_3x_4)x_2^2$

- 12 trees like: $T = \begin{array}{c}
\text{1} \\
\text{4} \\
\text{2} \\
\end{array}$

 wt $T = (x_1x_2x_3x_4)x_1x_3$
Example: K_4

- 4 trees like: $T = \begin{align*}
\begin{array}{c}
3 \\
2 \\
3
\end{array}
\end{align*}$

 $\text{wt } T = (x_1 x_2 x_3 x_4) x_2^2$

- 12 trees like: $T = \begin{align*}
\begin{array}{c}
2 \\
4
\end{array}
\end{align*}$

 $\text{wt } T = (x_1 x_2 x_3 x_4) x_1 x_3$

Total is $(x_1 x_2 x_3 x_4)(x_1 + x_2 + x_3 + x_4)^2$.
Laplacian

Definition The Laplacian matrix of graph G, denoted by $L(G)$.

Duval, Klivans, Martin Simplicial spanning trees
Laplacian

Definition The Laplacian matrix of graph G, denoted by $L(G)$.

Defn 1: $L(G) = D(G) - A(G)$

- $D(G) = \text{diag} (\text{deg } v_1, \ldots, \text{deg } v_n)$
- $A(G) = \text{adjacency matrix}$
Laplacian

Definition The Laplacian matrix of graph G, denoted by $L(G)$.

Defn 1: $L(G) = D(G) - A(G)$

- $D(G) = \text{diag}(\deg v_1, \ldots, \deg v_n)$
- $A(G) = \text{adjacency matrix}$

Defn 2: $L(G) = \partial(G)\partial(G)^T$

- $\partial(G) = \text{incidence matrix (boundary matrix)}$
Laplacian

Definition The **reduced Laplacian** matrix of graph G, denoted by $L_r(G)$.

Defn 1: $L(G) = D(G) - A(G)$

$D(G) = \text{diag}(\text{deg } v_1, \ldots, \text{deg } v_n)$

$A(G) = \text{adjacency matrix}$

Defn 2: $L(G) = \partial(G)\partial(G)^T$

$\partial(G) = \text{incidence matrix (boundary matrix)}$

“Reduced”: remove rows/columns corresponding to any one vertex
Example

\[
\begin{array}{c}
3 \\
2 \\
1 \\
4
\end{array}
\]

\[
\partial = \begin{pmatrix}
1 & 12 & 13 & 14 & 23 & 24 \\
1 & -1 & -1 & -1 & 0 & 0 \\
2 & 1 & 0 & 0 & -1 & -1 \\
3 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 0 & 1 & 0 & 1
\end{pmatrix}
\]

\[
L = \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{pmatrix}
\]
Matrix-Tree Theorems

Version I Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$\frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

spanning trees.

Version II G has $|\det L_r(G)|$ spanning trees

Proof [Version II]

$$\det L_r(G) = \det \partial_r(G)\partial_r(G)^T = \sum_T (\det \partial_r(T))^2$$

$$= \sum_T (\pm 1)^2$$

by Binet-Cauchy
Weighted Matrix-Tree Theorem

\[\sum_{T \in ST(G)} \text{wt } T = | \det \hat{L}_r(G) | , \]

where \(\hat{L} \) is weighted Laplacian.

Defn 1: \(\hat{L}(G) = \hat{D}(G) - \hat{A}(G) \)

\(\hat{D}(G) = \text{diag}(\hat{\deg} v_1, \ldots, \hat{\deg} v_n) \)

\(\hat{\deg} v_i = \sum_{v_i v_j \in E} x_i x_j \)

\(\hat{A}(G) = \text{adjacency matrix} \)

(entry \(x_i x_j \) for edge \(v_i v_j \))

Defn 2: \(\hat{L}(G) = \partial(G)B(G)\partial(G)^T \)

\(\partial(G) = \text{incidence matrix} \)

\(B(G) \) diagonal, indexed by edges,

(entry \(\pm x_i x_j \) for edge \(v_i v_j \))

Duval, Klivans, Martin

Simplicial spanning trees
Example

\[
\hat{L} = \begin{pmatrix}
1(2 + 3 + 4) & -12 & -13 & -14 \\
-12 & 2(1 + 3 + 4) & -23 & -24 \\
-13 & -23 & 3(1 + 2) & 0 \\
-14 & -24 & 0 & 4(1 + 2)
\end{pmatrix}
\]

\[
\det \hat{L}_r = (1234)(1 + 2)(1 + 2 + 3 + 4)
\]
Threshold graphs

- Vertices 1, \ldots, n

Example

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{example_threshold_graph.png}
\caption{Example of a threshold graph.}
\end{figure}
Threshold graphs

- Vertices $1, \ldots, n$
- $E \in \mathcal{E}, i \notin E, j \in E, i < j \Rightarrow E \cup i - j \in \mathcal{E}$.

Example

![Graph example]
Threshold graphs

- Vertices 1, \ldots, n
- \(E \in \mathcal{E}, i \notin E, j \in E, i < j \Rightarrow E \cup i - j \in \mathcal{E} \).
- Equivalently, the edges form an initial ideal in the componentwise partial order.

Example

\begin{itemize}
 \item \begin{tikzpicture}[scale=0.8]
 \node (1) at (0,0) {1};
 \node (2) at (-1,-1) {2};
 \node (3) at (1,-1) {3};
 \node (4) at (0,-2) {4};
 \draw (1) -- (2); \draw (1) -- (3); \draw (1) -- (4);
 \end{tikzpicture}
 \item \begin{tikzpicture}[scale=0.8]
 \node (1) at (0,0) {1};
 \node (2) at (-1,-1) {2};
 \node (3) at (-1,-2) {3};
 \node (4) at (1,-1) {4};
 \node (5) at (1,-2) {5};
 \draw (1) -- (2); \draw (1) -- (3); \draw (1) -- (4); \draw (1) -- (5);
 \end{tikzpicture}
\end{itemize}
Weighted spanning trees of threshold graphs

Theorem [Martin-Reiner ‘03; implied by Remmel-Williamson ‘02]:
If G is threshold, then

$$
\sum_{T \in ST(G)} \text{wt } T = (x_1 \cdots x_n) \prod_{r \neq 1} (\sum_{i=1}^{(d^T)_r} x_i).
$$

Example

$$
(1234)(1 + 2)(1 + 2 + 3 + 4)
$$
Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^V$; $F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.

Duval, Klivans, Martin
Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^V$;
$F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.

Complete skeleton The k-dimensional complete complex on n vertices, i.e.,

$$K^k_n = \{F \subseteq V : |F| \leq k + 1\}$$

(so $K_n = K^1_n$).
Simplicial spanning trees of K_n^k [Kalai, ’83]

$\Upsilon \subseteq K_n^k$ is a **simplicial spanning tree** of K_n^k when:

1. $\Upsilon_{(k-1)} = K_n^{k-1}$ (“spanning”);
2. $\tilde{H}_{k-1}(\Upsilon; \mathbb{Z})$ is a finite group (“connected”);
3. $\tilde{H}_k(\Upsilon; \mathbb{Z}) = 0$ (“acyclic”);
4. $|\Upsilon| = \binom{n-1}{k}$ (“count”).

▶ If 0. holds, then any two of 1., 2., 3. together imply the third condition.
▶ When $k = 1$, coincides with usual definition.
Counting simplicial spanning trees of K_n^k

Conjecture [Bolker ’76]

\[
\sum_{\Upsilon \in SST(K_n^k)} \left| \tilde{H}_{k-1}(\Upsilon) \right| = n^{n-2}\binom{n-2}{k}
\]
Counting simplicial spanning trees of K_n^k

Theorem [Kalai '83]

$$\sum_{\Upsilon \in SST(K_n^k)} |\tilde{H}_{k-1}(\Upsilon)|^2 = n^{n-2\choose k}$$
Weighted simplicial spanning trees of K^k_n

As before,

$$\text{wt } \Upsilon = \prod_{F \in \Upsilon} \text{wt } F = \prod_{F \in \Upsilon} \left(\prod_{v \in F} x_v \right)$$

Example:

$$\Upsilon = \{123, 124, 125, 134, 135, 245\}$$

$$\text{wt } \Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3$$
Weighted simplicial spanning trees of K_n^k

As before,

$$\text{wt } \Upsilon = \prod_{F \in \Upsilon} \text{wt } F = \prod_{F \in \Upsilon} \left(\prod_{v \in F} x_v \right)$$

Example:

$$\Upsilon = \{123, 124, 125, 134, 135, 245\}$$

$$\text{wt } \Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3$$

Theorem [Kalai, ’83]

$$\sum_{\Upsilon \in SST(K_n^k)} |\tilde{H}_{k-1}(\Upsilon)|^2(\text{wt } \Upsilon) = (x_1 \cdots x_n)^{(n-2)}(x_1 + \cdots + x_n)^{(n-k)}$$
Weighted simplicial spanning trees of K_n^k

As before,

$$\text{wt } \Upsilon = \prod_{F \in \Upsilon} \text{wt } F = \prod_{F \in \Upsilon} \left(\prod_{v \in F} x_v \right)$$

Example:

$$\Upsilon = \{123, 124, 125, 134, 135, 245\}$$

$$\text{wt } \Upsilon = x_5 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_5$$

Theorem [Kalai, '83]

$$\sum_{\Upsilon \in \text{SST}(K_n)} |\tilde{H}_{k-1}(\Upsilon)|^2 (\text{wt } \Upsilon) = (x_1 \cdots x_n)^{\binom{n-2}{k-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{k-2}}$$

(Adin ('92) did something similar for complete r-partite complexes.)
Proof

Proof uses determinant of reduced Laplacian of K_n^k. “Reduced” now means pick one vertex, and then remove rows/columns corresponding to all $(k - 1)$-dimensional faces containing that vertex.

$L = \partial \partial^T$

$\partial : \Delta_k \rightarrow \Delta_{k-1}$ boundary

$\partial^T : \Delta_{k-1} \rightarrow \Delta_k$ coboundary

Weighted version: Multiply column F of ∂ by x_F
Example $n = 4, k = 2$

\[\partial^T = \begin{array}{cccccc}
123 & 12 & 13 & 14 & 23 & 24 & 34 \\
 & -1 & 1 & 0 & -1 & 0 & 0 \\
124 & -1 & 0 & 1 & 0 & -1 & 0 \\
134 & 0 & -1 & 1 & 0 & 0 & -1 \\
234 & 0 & 0 & 0 & -1 & 1 & -1 \\
\end{array}\]

\[L = \begin{pmatrix}
2 & -1 & -1 & 1 & 1 & 0 \\
-1 & 2 & -1 & -1 & 0 & 1 \\
-1 & -1 & 2 & 0 & -1 & -1 \\
1 & -1 & 0 & 2 & -1 & 1 \\
1 & 0 & -1 & -1 & 2 & -1 \\
0 & 1 & -1 & 1 & -1 & 2 \\
\end{pmatrix}\]
Simplicial spanning trees of arbitrary simplicial complexes

Let Σ be a d-dimensional simplicial complex. $\Upsilon \subseteq \Sigma$ is a simplicial spanning tree of Σ when:

0. $\Upsilon_{(d-1)} = \Sigma_{(d-1)}$ ("spanning");
1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$ ("acyclic");
3. $f_d(\Upsilon) = f_d(\Sigma) - \tilde{\beta}_d(\Sigma) + \tilde{\beta}_{d-1}(\Sigma)$ ("count").

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When $d = 1$, coincides with usual definition.
Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$

- 6 SST’s not containing face 123
Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$

- 6 SST’s not containing face 123
- 9 SST’s containing face 123
Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$

- 6 SST’s not containing face 123
- 9 SST’s containing face 123

Total is $(x_1x_2x_3)^3(x_4x_5)^2(x_1 + x_2 + x_3)(x_1 + x_2 + x_3 + x_4 + x_5)$.
Simplicial Matrix-Tree Theorem — Version I

- Σ a d-dimensional “metaconnected” simplicial complex
- $(d-1)$-dimensional (up-down) Laplacian $L_{d-1} = \partial_{d-1} \partial_{d-1}^T$
- $s_d = \text{product of nonzero eigenvalues of } L_{d-1}$.

Theorem [DKM]

$$h_d := \sum_{\gamma \in \text{SST}(\Sigma)} |\tilde{H}_{d-1}(\gamma)|^2 = \frac{s_d}{h_{d-1}} |\tilde{H}_{d-2}(\Sigma)|^2$$
Simplicial Matrix-Tree Theorem — Version II

\(\Gamma \in \text{SST}(\Sigma_{(d-1)}) \)
\(\partial \Gamma = \text{restriction of } \partial_d \text{ to faces not in } \Gamma \)
\(\text{reduced Laplacian } L_\Gamma = \partial_\Gamma \partial_{\Gamma}^* \)

Theorem [DKM]

\[
 h_d = \sum_{\gamma \in \text{SST}(\Sigma)} |\tilde{H}_{d-1}(\gamma)|^2 = \frac{|\tilde{H}_{d-2}(\Sigma; \mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma; \mathbb{Z})|^2} \det L_\Gamma.
\]

Note: The \(|\tilde{H}_{d-2}| \) terms are often trivial.
Weighted Simplicial Matrix-Tree Theorems

- Introduce an indeterminate x_F for each face $F \in \Delta$
- Weighted boundary ∂: multiply column F of (usual) ∂ by x_F
- $\partial_\Gamma = \text{restriction of } \partial_d \text{ to faces not in } \Gamma$
- Weighted reduced Laplacian $L_\Gamma = \partial_\Gamma \partial_\Gamma^*$

Theorem [DKM]

$$h_d := \sum_{\gamma \in SST(\Sigma)} |\tilde{H}_{d-1}(\gamma)|^2 \prod_{F \in \gamma} x_F^2 = \frac{s_d}{h_{d-1}} |\tilde{H}_{d-2}(\Sigma)|^2$$

$$h_d = \frac{|\tilde{H}_{d-2}(\Delta; \mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma; \mathbb{Z})|^2} \det L_\Gamma.$$
Definition of shifted complexes

- Vertices 1, \ldots, n
- \(F \in \Sigma, i \not\in F, j \in F, i < j \Rightarrow F \cup i - j \in \Sigma \)
- Equivalently, the \(k \)-faces form an initial ideal in the componentwise partial order.

Example (bipyramid with equator)
\(\langle 123, 124, 125, 134, 135, 234, 235 \rangle \)
Hasse diagram

Duval, Klivans, Martin

Simplicial spanning trees
Hasse diagram

Duval, Klivans, Martin
Simplicial spanning trees
Links and deletions

- Deletion, $\text{del}_1 \Sigma = \{ G : 1 \not\in G, G \in \Sigma \}$.
- Link, $\text{lk}_1 \Sigma = \{ F - 1 : 1 \in F, F \in \Sigma \}$.
- Deletion and link are each shifted, with vertices 2, \ldots, n.
- Example:

 $$\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$$
Links and deletions

- **Deletion**, $\text{del}_1 \Sigma = \{ G : 1 \not\in G, G \in \Sigma \}$.
- **Link**, $\text{lk}_1 \Sigma = \{ F - 1 : 1 \in F, F \in \Sigma \}$.
- Deletion and link are each shifted, with vertices $2, \ldots, n$.
- **Example**:

 $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$

 $\text{del}_1 \Sigma = \langle 234, 235 \rangle$
Links and deletions

- **Deletion**, $\text{del}_1 \Sigma = \{ G : 1 \not\in G, G \in \Sigma \}$.
- **Link**, $\text{lk}_1 \Sigma = \{ F - 1 : 1 \in F, F \in \Sigma \}$.
- Deletion and link are each shifted, with vertices $2, \ldots, n$.
- **Example**:

 \[
 \Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle \\
 \text{del}_1 \Sigma = \langle 234, 235 \rangle \\
 \text{lk}_1 \Sigma = \langle 23, 24, 25, 34, 35 \rangle
 \]
Weighted enumeration of SST’s in shifted complexes

Theorem Let \(\Lambda = \text{lk}_1 \Sigma \), \(\Delta = \text{del}_1 \Sigma \),

\[
\prod_{\sigma \in \tilde{\Lambda}} X_{\sigma} \prod_{r \in (\text{del}_1 \Sigma)} \frac{r \sum_{i=1}^{r} X_i}{X_1}.
\]

Example bipyramid \(\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle \) again

\[
\Lambda = \text{lk}_1 \Sigma = \langle 23, 24, 25, 34, 35 \rangle
\]

\[
\Delta = \text{del}_1 \Sigma = \langle 234, 235 \rangle
\]
Weighted enumeration of SST’s in shifted complexes

Theorem Let $\Lambda = \text{lk}_1 \Sigma$, $\Delta = \text{del}_1 \Sigma$.

Example bipyramid $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$ again

$\Lambda = \text{lk}_1 \Sigma = \langle 23, 24, 25, 34, 35 \rangle$

$\Delta = \text{del}_1 \Sigma = \langle 234, 235 \rangle$
Weighted enumeration of SST’s in shifted complexes

Theorem Let \(\Lambda = \text{lk}_1 \Sigma \), \(\tilde{\Lambda} = 1 \ast \Lambda \), \(\Delta = \text{del}_1 \Sigma \), \(\tilde{\Delta} = 1 \ast \Delta \).

Example bipyramid \(\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle \) again

\[
\Lambda = \text{lk}_1 \Sigma = \langle 23, 24, 25, 34, 35 \rangle \quad \tilde{\Lambda} = \langle 123, 124, 125, 134, 135 \rangle \\
\Delta = \text{del}_1 \Sigma = \langle 234, 235 \rangle \quad \tilde{\Delta} = \langle 1234, 1235 \rangle
\]
Weighted enumeration of SST’s in shifted complexes

Theorem Let $\Lambda = \text{lk}_1 \Sigma$, $\tilde{\Lambda} = 1 \ast \Lambda$, $\Delta = \text{del}_1 \Sigma$, $\tilde{\Delta} = 1 \ast \Delta$.

$$h_d = \prod_{\sigma \in \tilde{\Lambda}} X_{\sigma} \prod r (\sum_{i=1} X_i) / X_1).$$

Example bipyramid $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$ again

$$\begin{align*}
\Lambda &= \text{lk}_1 \Sigma = \langle 23, 24, 25, 34, 35 \rangle \\
\tilde{\Lambda} &= \langle 123, 124, 125, 134, 135 \rangle \\
\Delta &= \text{del}_1 \Sigma = \langle 234, 235 \rangle \\
\tilde{\Delta} &= \langle 1234, 1235 \rangle \\
\end{align*}$$

$$h_2 = (123)(124)(125)(134)(135)((1+2+3)/1)((1+2+3+4+5)/1)$$
Cubical complexes

To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).
Complete skeleta (Example)

Spanning trees of 2-skeleton of 4-cube, with appropriate weighting:

\[p(123)p(124)p(134)p(234)p(1234)^2 \]

where, for instance,

\[p(123) = x_1 x_2 x_3 y_1 y_2 y_3 \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{y_1} + \frac{1}{y_2} + \frac{1}{y_3} \right) \]
Cubical analogue of shifted complexes

- Pick definition of “shifted” to be nice with Laplacians
- In unweighted case, Laplacian eigenvalues are still integers
- Still working on trees