Section 8.7

L'Hôpital’s Rule

Let \(f \) and \(g \) be functions that are differentiable on an open interval \((a, b)\) containing \(c \), except possibly at \(c \) itself. Assume that \(g'(x) \neq 0 \) for all \(x \) in \((a, b)\), except possibly at \(c \) itself. If the limit of \(\frac{f(x)}{g(x)} \) as \(x \) approaches \(c \) produces the indeterminate form \(0/0 \), then

\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
\]

provided the limit in the right exists (or is infinite). This result also applies if the limit of \(\frac{f(x)}{g(x)} \) as \(x \) approaches \(c \) produces any one of the indeterminate forms \(\infty/\infty \), \((-\infty)/\infty\), \(\infty/(-\infty)\), or \((-\infty)/(-\infty)\).

The forms \(0/0\), \(\infty/\infty\), \(\infty-\infty\), \(0\cdot\infty\), \(0^0\), \(1^\infty\), and \(\infty^0\) have been identified as indeterminate.

Problem 1. Evaluate the limit, use L'Hôpital’s rule if necessary.

a) \(\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2}\)

b) \(\lim_{x \to 1} \frac{\ln x^2}{x^2 - 1}\)

c) \(\lim_{x \to 0^+} \frac{e^x - x - 1}{x^2}\)

d) \(\lim_{x \to \infty} \frac{x^2}{e^x} \)

e) \(\lim_{x \to \infty} x \tan \frac{1}{x} \)

f) \(\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x \)
g) \(\lim_{x \to 0^+} (\sin x)^x \)

h) \(\lim_{x \to 1^+} \left(\frac{4}{x - 1} - \frac{5}{\ln x} \right) \)

Homework: Read Section 8.7, do 5-55 (odd).