Cyclic Quadrilaterals

Cyclic Quadrilateral
A quadrilateral inscribed on a circle, a quadrilateral whose vertices all lie on a circle. The vertices are said to be concyclic.

Theorem
A necessary condition and sufficient condition for a quadrilateral to be cyclic is that the sum of its opposite angles is 180°.

Theorem
If $\alpha = \beta$ then the quadrilateral $ABCD$ is cyclic.
Problem 1. The circles C_1 and C_2 intersects at the points A and B. A line through the point A intersects the circles C_1 and C_2 at the points C and D, respectively. The tangent line through C to C_1 and the tangent line through D to C_2 intersects at the point M. Show that the quadrilateral $MCBD$ is cyclic.

Problem 2. Let BC the diameter of a semicircle, and let A the midpoint of the semicircle (boundary), M a point over the arc AC, and P, Q the foot of the altitudes from A and C to the line BM, respectively. Show that $BP = PQ + QC$.
Problem 3. The angle bisectors of the interior angles of a quadrilateral $ABCD$ intersects at the points E, F, G and H, as shown below. Show that the quadrilateral $EFGH$ is cyclic.

Problem 4. In a triangle ABC, a parallel line to the side BC intersects the side AB and AC at the points P and Q, respectively. The circle passing through P and tangent to AC at the point Q intersects AB at R. Show that the quadrilateral $RQCB$ is cyclic.
Problem 5. In a rectangle $ABCD$, let P a point in the interior of $ABCD$ such that $\angle APD + \angle BPC = 180^\circ$. Find $\angle DAP + \angle BCP$.

Problem 6. In a triangle ABC, let D the foot of the perpendicular from A, E and F over a line passing through D such that AE is perpendicular to BE, AF is perpendicular to CF, with $D \neq E \neq F$. Let M and N the midpoints of BC and EF, respectively. Show that AN is perpendicular to NM.
Exercises

Problem 7. Let $ABCD$ a convex quadrilateral which its diagonals are perpendicular, over every side of this quadrilateral a square is constructed exterior to the quadrilateral. Show that the segment joining the centers of the opposite squares (squares over the opposite sides of the quadrilateral) pass through the intersection point of the diagonals of the quadrilateral.

Problem 8. Let $ABCD$ a square, M the midpoint of AB. A perpendicular line to MC passing through M intersects AD at K. Show that $\angle BCM = \angle KCM$.

Problem 9. Let $ABCD$ a cyclic quadrilateral, let M the intersection point of the diagonals of $ABCD$, and let E, F, G and H the foot of the perpendiculars from M to the sides $AB, BC, CD,$ and DA, respectively. Show that $EFGH$ has an inscribed circumference (a circumference tangent to every side of the quadrilateral), and find its center.

Problem 10. Let AB the diameter of a circle with center at O. Let C a point over the circumference such that OC is perpendicular to AB. Let P a point over the arc CB. The lines CP and AB intersects at Q. Let a point R over the line AP such that RQ is perpendicular to AB. Show that $BQ = QR$.

Problem 11. Let $ABCD$ a cyclic quadrilateral with the property that its diagonals are perpendicular, P the intersection point of its diagonals. Show that the perpendicular line from P to any of the quadrilateral’s sides bisect the opposite side.

Problem 12. Let $ABCD$ a cyclic quadrilateral with the property that its diagonals are perpendicular (intersection angle is 90°). Show that the distance from the center of the circumcircle of $ABCD$ to one of the sides is the half of the length of the opposite side.

Problem 13. Given is the circle C_1, let P an exterior point to C_1, from P draw two tangent lines to C_1 which intersects C_1 at A and B, also from P draw a secant line l to C_1. From the center O of C_1 draw a perpendicular line to l, this line intersects C_1 at the point K, and let C the intersection between OK and l. Show that BK is the angle bisector of $\angle ABC$.