Using Prediction and Clickers to Address Students' Mathematical Misconceptions

Kien Lim Dept. of Math Sciences

March 10, 2011

Outline of Presentation

1. Experience for Yourself

2. Benefits of Using Prediction & Clickers

3. Classroom Research

4. Results and Discussion

1. Experience for Yourself

Fill in the blank with either >, <, or =

81405	2884	81405 ړ
67092	3717	67092

- A. >
- B. < C. =

1. Experience for Yourself

If *N* is a natural number, then *N* can take any of these values: 1, 2, 3, 4, 5,

Is the following inequality always true, sometimes true, or never true?

N is a natural number:

$$\frac{67}{89} \times N < N$$

- A. Always True (AT)
- B. Sometimes True (ST)
- C. Never True (NT)

1. Experience for Yourself

Two Misconceptions

- Multiplication Makes Bigger (MMB)
- Division Makes Smaller (DMS)

MMB-DMS can affect students' thinking

A piece of cheese weighs 0.923kg. 1 kg costs 27.50 kr. Find out the price of the cheese. Which operation would you have to perform? 27.50 + 0.923 $27.50 \div 0.923$ 0.923×27.50 27.50 - 0.92329%

(Ekenstam and Greger, 1983)

1. Experience for Yourself

Two Misconceptions

- Multiplication Makes Bigger (MMB)
- Division Makes Smaller (DMS)

MMB-DMS can affect students' thinking.

A piece of cheese weighs 0.923kg. 1 kg costs 27.50 kr. Find out the price of the cheese. Which operation would you have to perform? 27.50 + 0.923 (27.50 ÷ 0.923) 0.923 × 27.50 27.50 - 0.923

A common explanation: "The piece of cheese must cost less than 27.50, so I must *divide to get a smaller number*" (p. 376)

(Ekenstam and Greger, 1983)

Benefits of Using Prediction

- Allows students to rely on intuition or capitalize on certain structural properties, instead of performing procedures (Lim et al., 2010)
- Improves student understanding via cognitive conflict (Gunstone et al., 1992; Palmer, 1995; Lavoie, 1999)
- Helps students notice certain structures in math (Buendía & Cordero, 2005; Fischbein & Grossman, 1997; Lim, 2006)
- Increases students' level of engagement (White & Gunstone, 1992; Kim & Kasmer, 2007)

"The commitment involved in deciding on a prediction can have powerful motivation effects." (White & Gunstone, 1992, p. 63)

2. Benefits of Using Prediction & Clickers

Benefits of Using Clickers

- Requires students to participate actively
- Provides a safe environment
- Provides immediate feedback
- Facilitates class discussion/debate
- Creates a fun atmosphere

(Cline, Zullo, & Parker, 2006)

Participants

- Prospective teachers in 4-8 grade band
- Two sections of MATH 3308 (Proportional & Algebraic Reasoning 1)

Research Objectives

- to investigate the viability of a lesson using five such items in addressing the MMB-DMS misconceptions
- to compare students' pre-post improvement between two groups

Prediction-clicker-discussion

- 1. Read the question
- 2. Write one's prediction
- 3. Vote via clickers
- 4. Discuss in small groups
- 5. Re-vote
- 6. See explanation

Discussion-only

1. Read the question

- 4. Discuss in small groups
- 6. See explanation

Is the following inequality always true, sometimes true, or never true?

N is a natural number:

$$\frac{67}{89} \times N < N$$

- A. Always True (AT)
- B. Sometimes True (ST)
- C. Never True (NT)

Many children will choose "NT". Why?

N is a natural number:
$$\frac{67}{89} \times N < N$$

Because they think "multiplication makes bigger".

For example, $6 \times 10 < 10$ is false (In this case, N = 10).

 $6 \times 10 = 10 + 10 + 10 + 10 + 10 + 10 = 60.$

So "6 times 10 makes 10 bigger".

Note: $\frac{67}{89}$ is a proper fraction. i.e, $\frac{67}{89} < 1$.

The correct answer is "AT". Why?

N is a natural number:
$$\frac{67}{89} \times N < N$$

Suppose N = 10. $\frac{67}{89} \times 10$? 10

Note: $\frac{67}{89}$ is a proper fraction. i.e, $\frac{67}{89} < 1$.

The correct answer is "AT". Why?

Suppose N = 10. $1 \times 10 = 10$

Note: $\frac{67}{89}$ is a proper fraction. i.e, $\frac{67}{89} < 1$.

The correct answer is "AT". Why?

Note:
$$\frac{67}{89}$$
 is a proper fraction. i.e, $\frac{67}{89} < 1$.
 $\frac{67}{89} \times N$ is actually a fractional part of the quantity N.

The correct answer is "AT". Why?

A proper fraction times a number makes the number <u>smaller</u>.

Data Sources

- Pre-test
 Post-lesson quiz
 Exit-test
- Students' written responses during the lesson
 Electronic data collected via clickers for one class
- Students' reflection logs
 - 1. Three important things that you have learned
 - 2. What do you like or dislike about the activity?
 - 3. What was the most effective part of the activity? What was the least effective part of the activity?
 - 4. Suggestions to make this activity more effective

Percent Correct

Pre-Exit Effect Size

Percent of MMB-DMS-related Responses

A particular student's response in the pre-test

The same student's response in the exit-test

Things that Students Wrote about	P-C-D	D-only
What They Had Learned	Class	Class
MMB-DMS misconceptions	21	16
Effect of proper/improper fractions on	8	13
multiplication/division		
Improper fractions being greater than 1	2	5
Plugging-in numbers for variables	5	2
Being cautious	3	3
Effect of multiplicative identity on multiplication	1	4
Dividing by a number as multiplying by its reciprocal	2	3

Things that Students Wrote about	P-C-D	D-only
What They Liked	Class	Class
Learning certain mathematical ideas	11	8
Having Fun	б	2
Clickers	5	0
Thinking about the problems	4	5
Working in groups	4	4
Predicting	3	1
Learning from errors	3	0

Responses about Most Effective Part of the Activity

- "It was the clickers. It will make everyone want to participate."
- "The part that give a prediction ..."
- "Try to answer the problems by just looking at the problem without working it out. It really makes you think"
- "The PowerPoint Presentation"
- "The animation. This helps illustrate the solutions."

An Article in Press

Lim, K. H. (in press). Addressing the multiplication makes bigger and division makes smaller misconceptions via prediction and clickers. *International Journal of Mathematical Education in Science and Technology*.

Questions?

Thank You