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A paper providing all the filler details, background, and cited sources is 

currently in preparation.
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And so, in order to talk seriously about mathematics and how it is 

learned by young minds— and, especially, about ―mathematical habits 

of mind‖ — we must talk at least a bit about the nature of those minds.
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*ALL* learning involves the building and adjusting of categories one 

abstracts from experiences around one. This is most easily noticed with 

children before they get to school, who experience a veritable tsunami 

of chaotic sensory input, filter and classify it in various ways, attach 

arbitrary sounds (words) to bits and pieces of it, and make all kinds of 

observations and claims that only they would ever have thought of.  

This is an act of abstraction and knowledge building not anywhere 

nearly as orderly as what we do in mathematics, but represents the 

mental ability without which mathematics would be impossible. 

Mathematics is a refinement of, not a departure from, this early 

abstraction which is absolutely natural and universally built in as our 

evolutionary version of teeth and claws.

Last bullet: orientation of objects is irrelevant (regardless of spatial 

orientation, the object is recognized as the same) in *all* of life. Except 

print! In print, b, p, q, and d are not the same object, despite being the 

same shape rotated or reflected, and WAS ≠ SAW. Mathematical 

concepts (at least through early high school) mostly behave according 

to the physical world, with order and orientation playing only the roles 

they do with objects. Mathematical notation (a syntactic world) is where 

one must think twice about order. Commutative property is not about 

shoving objects together in either order on a table: it is a property of 

abstract tokens in a logical system. The ―semantic sense‖ of addition 

having this property can be illustrated by moving objects, and that is all

that should probably be done with children, but the value is only to help 

them realize that the newly (and painfully) discovered departure of the 
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Before ―conservation of number‖ begins to kick in (roughly between 

ages 4 and 6), quantity isn‘t always stable for young children. At this 

stage, even if a child can successfully count eight objects, the child may 

tenaciously insist that when those objects are spread out, they are 

―more‖ than when they‘re bunched closely together (and, if they are 

candy, will want the ―more‖ even if, upon actual counting the two 

groups, the child counts higher on the ―smaller‖ group). If 8 doesn‘t 

always equal 8, then the assertion that 5 + 3 = 8 has no logic to it at all.  

Neither do our names have logic, of course, and we‘re capable of 

remembering them, but we don‘t want mathematics to be built as a 

collection of arbitrary and illogical statements.  

The pre-conserving child may ―know‖ that 5 + 3 is ―more‖ than 8, for 

example, and it doesn‘t serve a learner‘s sense of depending on reason 

to say, in effect, ―your reasoning is inadequate, so listen to mine.‖ So, in 

order to learn arithmetic, the child must first acquire the algebraic ideas 

behind pulling apart and rearranging and reassembling the parts of 

numbers — essentially an amalgam of what we call commutativity and 

associativity, but in the physical world of objects which doesn‘t need 

those properties to be differentiated (or even articulated). Algebraic 

ideas – at least some of them – precede the ability to learn arithmetic. 

They develop ―naturally‖ with the child and not from instruction or 

cultural heritage; they‘re how we are evolved to make sense of the 

world.
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By contrast, language is always convention. We‘re built to be adept at 

learning it, but it is cultural and requires experience. Still not 

―instruction‖ but use in context; it does not arise spontaneously from 

experience only with the world; it requires experience with native users 

of the language.
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Any countable objects — and fingers are cheap, portable, always 

available — are good for beginning to understand the idea of addition 

and subtraction, which arise first as shortcuts for counting forward or 

backward.  When children are just getting started with arithmetic, 

fingers (or other counters) are also useful for finding or verifying 

answers to certain problems, like 27 – 4.  

But the way we‘ve named numbers is intended to make certain 

problems, like 24 – 4, feel as automatic and effort-free as language is.  

We‘ve named numbers — they weren‘t born with names! — to say what 

they‘re made of.  German names 24 ―four and twenty‖; English names it 

―twenty-four‖; but either way, we see it has two parts.  We could count 

backwards to take 4 from 24, but we could also just use the name: 

taking ―four‖ from ―twenty-four‖ is like taking ―Lennon‖ from ―John 

Lennon‖; we don‘t have to ―do‖ anything to know what‘s left.

For more about why the 24-4 part is a *LINGUISTIC* notion, 

see 

http://thinkmath.edc.org/index.php/Addition_and_subtraction#Adding_a

nd_subtracting_10
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The symbols may confuse children, but the language does not, and so if 

we teach the ideas linguistically first, and then use the symbols as a 

way of writing what the children already know, their learning will be 

much easier.

The idea of reading and writing across the curriculum can be good, but 

one wants to temper it with a recognition of how difficult it really is, and 

not let it compete with the other learning that the child is doing.
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Elementary algebra serves two important purposes: expressing 

numerical computation, patterns, and relationships that we already 

know; and deriving various things that we do not already know. These 

are not important to distinguish when we are teaching algebra to older 

students and adults: both purposes feel ―central‖ to the subject, and 

both uses are possible for adults to learn. For children it is different. 

They are not, in general, able to use purely syntactic (formal) operations 

on symbols to derive things that they do not know. But they are the 

consummate language learners, and are very capable of using this

language to express things that they do already know.  Teaching 

―algebra‖ the way we might teach it to a 9th grader is not appropriate, 

and not likely to work, for a 5th grader.   But teaching algebra as a 

second language—or, rather, as an abbreviated way of writing what the 

child might otherwise say—makes perfect sense. It makes life easier for 

them immediately, as an easier way of expressing what they are 

already seeing and trying to talk about, and it gives them an enormous 

advantage when they learn the other use of algebra a few years later.
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Kids LOVE doing these.  First time 4th graders see this, they want to 

*memorize* every word, do it on their friends…

For more, see: http://thinkmath.edc.org/index.php/Number_tricks
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They also want to understand!

Before the development of algebra, people did try to explain how 

mathematical processes like this worked, using spoken and written 

language, and the results were cumbersome and very hard to follow.  It 

is hard to explain how this trick works, but it is easy to show.
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I imagine a bag with that many marbles in it, tied with a string, so that 

only you know how many are in there.
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I still don‘t know your number, but I can draw a picture that represents 

adding 3 to your number.
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And I know how to double.  I still don‘t know your original number, but I 

know this represents the number you *now* have.
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The instructions are a recipe for (2(n+3) – 4) ÷ 2 - n. 

The result, 1, is an algebraic simplification of those instructions.
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They get some practice with arithmetic, but this practice is incidental to 

what else they‘re doing, which involves mathematical language, using 

tabular format and, most important, learning (via this ―trick‖) both the 

kind of structure that one finds inside a multi-step arithmetic process, 

and the kind of symbolic system that helps record that structure in an 

efficient and clear way.

Incidentally, this also shows the two-dimensionality of mathematical 

―reading.‖ The significance or nature or meaning of any entry in any cell 

depends on both column and row.
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With Dana, we knew what the starting number was, and already know 

how to follow instructions to get from there to the end. With the other 

children, we know how they *end*, and need to work backwards.

If we try to do that with words, alone, it is hard!  To *do* the steps, we 

read the instruction *on the same line in which we write the answer.* It 

is natural that to *undo* the steps, even adults are easily mixed up. To 

fill in the number just above the 3 in Sandy‘s column, we must read the 

instruction on the line with the 3, not the line we intend to fill in, and we 

must not *follow* the instruction, but perform the opposite.

But if we do it with the picture notation, the job is much easier.  We can, 

again, read the ―instructions‖ (pictures) on the line we wish to fill in, and 

compare them with the pictures on the line we already know.  Then, we 

can either work backwards step by step, or…
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…we can ―jump‖ directly to the beginning.  If Cory‘s 7 is one bag and 

three marbles, then the bag, itself, must contain 4 marbles.

Later, as we keep drawing marble bags on the board, they become a 

nuisance to draw, so we simplify the picture. No more tie around the 

opening of the bag.  No more bag top.  No more bag bottom!  Only the 

x is left where the tie used to be.



28

Scrawl ―bag‖ first, to make clear that we are describing the pictures. But 

it‘s neater and easier just to abbreviate to ―b.‖

*NOT* about ―letters standing for numbers‖ or about ―variables‖ or about 

―algebra.‖ This is just a way of abbreviating ENGLISH.  A picture is 

worth a thousand words.  A word is easier to write. An abbreviation is 

even easier!
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The most important message is that there *can* be a more powerful 

notation than words, and that some mathematical acts become easier if 

we find a suitable notation.

Too often, algebra is just ―another thing to learn,‖ not at all a favor to 

kids. At this early age, algebra should be a convenient way to record 

what they already know, and to help see the results of processes.  

Syntactic manipulations of algebra, at this age, are rarely appropriate --

kids can‘t use algebra to derive or prove what they don‘t already know --

but they *can* use the symbols of algebra to record what they *do* 

already know.  It is a language, and kids are great language learners, 

when the language is used sensibly in context!

There is an extra bonus.  We do want children to be able to describe 

their mathematical thinking verbally and in writing.  Giving them the 

appropriate language helps them do that. And useful notation can even 

help structure their thinking well enough to allow them to describe it 

more easily. We have to understand before we can describe. Attempting 

to do these two hard tasks at the same time sacrifices both of them.
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Michelle, a second grader, was typically fast in figuring out puzzles like 

this. Very early in the year, she saw this table, figured that it was about 

subtracting 8 (top to bottom) or adding 8 (bottom to top) and had 

already finished the puzzle before I had the chance to hand all the 

papers out. ―How did you do it so fast,‖ I asked.  ―I figured it out, but I 

didn‘t even have to.  It says it right there.‖  She smiled as if she‘d 

discovered a secret-code answer key that we had accidentally left on 

the paper! 

But she wouldn‘t have known that ―it says it,‖ if she had not already 

figured out the pattern. Only after she knew the pattern would the 

symbols n – 8 make any sense to her.  No attention at all was ever 

called to the algebraic symbols in class, no teaching of them, no 

mention of variables, no mention of letters instead of numbers, or ―this 

means *any* number we want.‖ No mention at all. Just by looking at the 

numbers, Michelle derived the pattern of the page: ―subtract 8.‖ She 

then attached that meaning to the ―pattern indicator‖ at the left without 

so much as a word from the teacher. She was not told the meaning of 

the algebraic symbols, but invested those symbols with that meaning, 

and then even ―saw how‖ the ―subtract 8‖ showed up in those symbols. 

That is how all children learn virtually all of their spoken language.  A 

dog passes by, mommy makes the sound ―doggy‖ and baby attaches 

that sound to that sight. Baby may generalize incorrectly at first 

(applying ―doggy‖ to all small animals, for example), but eventually sorts 

it out. 
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Multiplication ―onions‖ or ―rainbows.‖ This activity is conducted with the 

*teacher* not talking at all (it‘s nice, but not necessary, to have children 

not talking either) and is suitable at *any* grade in which the children 

collectively know all the basic multiplication facts, even if none of the 

children are, individually, fluent with all of them. 

The teacher puts up a number line, draws a pair of arrows from any 

single number (in this example, I chose 6), fills in the product (a 

square), draws a pair of arrows from the two nearest neighbors to the 

left and right (5 and 7), fills in the product, draws a pair of arrows from 

any new number, and then pauses, offering the chalk or marker to any 

volunteer, assuming that *some* child will notice that the numbers are 

products. If nobody takes the challenge, fill in the product, and draw the 

near-neighbor arrows and again offer the marker. Continue for several 

more examples, until children are hopping out of their seats having 

―noticed something.‖ Options: If children need practice on facts and/or 

multiplication, challenge ―will it always work? Try some other cases. Try 

a few big numbers (like 27 x 27 and 26 x 28).  The practice is 

interesting because it is not arbitrary work, but part of 

discovery/research. 

Then, return to the silent presentation, posing examples like those on 

the bottom, where a multiple of 10 is squared (easy to do in one‘s head) 

and then its two neighbors are ―multiplied mentally‖ because kids know 

how to find the product of these near neighbors.

―Wow!  How did you know work 19x21 in your head so fast?!  What 

about 49x51?‖ (again, show it on a number line with the 50 between, so 

people can picture 50x50 = 2500 and mentally subtract 1 for 49x51).
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Then do the same thing ―two steps away.‖  E.g., 6x6 followed by 4x8.  

8x8 followed by 6x10.  5x5 followed by 3x7.

If the class needs practice, give them time to find more cases. If they 

don‘t need practice, just go on to the neat challenge! 

What‘s 28 x 32?  If people don‘t see right away, draw in the arrows that 

mean ―30x30.‖ What about 45 x 62?
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For each new step, allow time to do the research, challenge kids to 

multiply some higher numbers, and look for a pattern.

What is the pattern in what we subtract? 

1 step away: 1.  

2 steps away: 4. 

3 steps away: 9.

4 steps away: 16.

5 steps away: 25.

You can, if you want, then compare 30 x 40 to 35 x 35 (five steps 

away!). So we now have a way of finding the squares of 2-digit numbers 

ending in 5.  Ah!  And if you can do 35 x 35 in your head, then you can 

do 34 x 36, too, can‘t you!
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For the teacher, this is an opportunity to provide practice that feels spiffy 

and impressive to the child!  Gives kids LOTS of practice, but always a 

novel feel, and the sense that they are being very smart.  Kids show off 

to parents.  ―Give me a number under 100.‖ Parent gives 84. Child then 

says, ―OK. Multiply 84 x 76 and see if you can beat me.‖ While parent is 

writing it down on paper, the child says ―The answer is 6384.‖

This may also spark the teacher‘s interest!
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All the algebraic thinking also asks kids to develop bigger ―mental 

buffers.‖ See  http://thinkmath.edc.org and search for ―focus‖ or 

―attention.‖
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To get from the algebraic ―thinking‖ to the language, we (at elementary 

school) DON‘T talk about ―variables‖ and ―letters standing for numbers‖ 

or ―algebra‖ at all. We ask kids to express the pattern they‘ve seen IN 

ENGLISH.  It turns out to be VERY awkward to do.  So we give the 

numbers names. See  

http://thinkmath.edc.org/index.php/Difference_of_squares for more 

about how this is done.

When teaching, I deliberately write fast (naturally producing my worst 

handwriting) to make the case that I‘d like something simpler and with 

less writing involved!

Generalizing from a specific case (working various distances from 7) to 

a general case (any distance from any number).

The result -- not something we need to write in 5th grade, but 

something they *CAN* write then -- is a major topic in algebra!  And 

they already know it, whether they‘ve written it or not.  They are 

―foreshadowing‖ an idea that often comes ―hard.‖

Nicolina Malara, a researcher in Italy, refers to this (and even more non-

standard) algebraic notation as ―Algebraic Babble‖ -- a kind of not-quite-

grammatical but fully communicative precursor to the real thing, and as 

―safe‖ for children to pass through as natural language babble is as they 
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Again, the use of ―d‖ is not a ―variable‖ or an algebraic trick.  It is simply 

an abbreviation for what we mean: distance.  It is a way of making 

English EASIER, or rather, making it easier to say what we want.
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Learning to read mathematics is different from learning to read English. 

Unlike English prose, which reads strictly left to right (the up-down 

component is merely a concession to page width), mathematical 

information is VERY often two-dimensional in nature. Coordinate graphs 

require two dimensions of information (the horizontal and vertical 

position of the dot); bar graphs coordinate two dimensions (which bar 

and how tall) in order to convey information; charts; tables….  

Even symbolic notation uses vertical information (superscripts like the 2 

in 32, or numerator and denominator in a fraction) as well as horizontal 

information.

Moreover, even the horizontal information is not strictly left to right. 

Students need to know that even before they learn order of operations 

(e.g., to do 9 + 6 = __ + 5). 

When infants first learn to reach for a bottle, they don‘t recognize the 

bottle if it‘s presented upside down (in the wrong orientation), but they 

very quickly learn that it doesn‘t matter which way an object is held; it‘s 

the same object. That remains true pretty much throughout life! And for 

some children, that‘s very hard to unlearn, when they encounter PRINT.  

Reading presents an exception: d ≠ b ≠ p ≠ q.  Orientation matters, and 

order matters, too: was ≠ saw.  It takes time to learn that print is 

different from virtually everything else.  Presented with 8 objects on a 

table, separated into two lumps (say 5 and 3), they don‘t at all care 
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So we start teaching about mathematical reading early. These first 

graders are getting an introduction to geometric/spatial ideas and the 

language for describing location. Because kids get words in context, 

they often don‘t even wonder what ―intersection‖ means—they figure it 

out from context—even if they‘ve never heard the word before. But if 

they‘re not sure, ―at the corner‖ helps clarify, and then, totally naturally, 

we go back to using the fancier word.

When we ask ―where is the green house‖ kids often point and say 

―there!‖ To encourage the language, pretend you‘re asking over the 

phone and can‘t see what they‘re pointing to, a quite realistic scenario!
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Among the earliest lessons in second grade, children are learning to be 

systematic in making lists.  It takes a very long time. It is not mastered 

in a lesson, or a week of lessons (which is why we start early), but they 

can do it experimentally and erratically, but with fun and satisfaction 

right at the start, and gain competence slowly over time. (Compare 

learning to talk, or ride a bicycle.)

Children have actual cards with letters they can rearrange.  They begin 

non-systematically but, because there are only a few combinations, 

they all succeed in finding all the combinations.

For the teacher, several unexpected connections between math and 

language arts: classification (vowels and consonants), combinations 

(multiplication on the math side, phonics on the LA side). Note that ―how 

many letters‖ calls for addition.  ―How many two-letter words‖ (in a 

particular order) calls for multiplication.
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After they have explored, we make it systematic with a metaphor of 

streets and avenues.  ―Show a car driving (or Drive your finger) along ‗A 

street.‘  Now drive that car along ‗S avenue.‘ 

There‘s a stop light at every intersection in this tiny town!  Can you 

show the intersection of ‗A street‘ and ‗S avenue‘? If kids are uncertain 

about the language (a rare occurrence), rephrase: Show where ‗A 

street‘ and ‗S avenue‘ meet, the intersection of ‗A street‘ and ‗S 

avenue‘.‖  Each stoplight is named by the intersection it is at. This 

stoplight is named IT. Can you find the stoplight named AS?  What is 

the name of *this* stoplight? (AT)… etc.

When we ask how many roads (letters) altogether, that‘s addition. When 

we ask how many intersections (letter combinations), that‘s 

multiplication.  Is this practicing phonics, or coordinates, or anticipating 

multiplication? Or systematic listing, or combinatorics? Yes.
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Seeing multiplication in combinations and intersections is often new for 

the teacher as well as for the child, an idea that is laden with many 

surprises.

As we can simplify the drawing of the marble-bag by erasing the top 

and bottom and leaving only the tied part (looking like the ―x‖ of 

algebra), here, too, the *notation* -- the times sign -- is deliberately 

connected with an image that gives it meaning. The times sign looks 

like the street-avenue crossings.

The complexity of the word parts can be suited to the children‘s abilities. 

Finding the non-words is fun for kids, excellent reading practice (check 

with the reading specialist!), and also fits with early mathematical goals 

of having children classify thoughtfully, looking for examples and non-

examples of (whatever).

YOU CAN INVENT THESE COMBINATIONS ON YOUR OWN, BUT 

CHECK THEM OUT FIRST TO MAKE SURE THAT ALL THE ―WORDS‖ 

THAT KIDS FIND ARE ONES YOU DON‘T MIND THEM FINDING!
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Making the kind of list that we needed in order to solve the previous 

puzzle involves a kind of systematic thinking that we start teaching very 

early (because it takes years to develop). It isn‘t mathematical ―content,‖ 

in the usual sense, but is an essential mathematical *skill* that is often 

overlooked (or blithely assumed to develop on its own).  Problems like 

the ones shown here appear on tests (!). The real mathematical ―meat‖ 

of them is in seeing how they connect to ideas of (1) multiplication, (2) 

coordinate systems, (3) ―counting‖ without counting, (4) systematic 

enumeration, (5) thoughtful investigation.
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As we‘ve shown, problems need not be ―word problems,‖ but the word 

problem is an honest move, an attempt to convey, in a print medium, 

something like the nature of problems that ―just happen to us‖ in ―real 

life.‖ (In older texts, this was more apparent, both to the modern reader 

and probably to the century-ago child.) 

But the focus has become ―learning how to do word problems‖ rather 

than ―learning how to do problems‖ that, as it turns out, have been 

presented in words because we‘re in a print medium!

Unlike flowing prose, in which there is enough contextual redundancy 

and logical flow to make sense out of unfamiliar words or novel actions 

— people, even muggles, bring a lot of life knowledge to understanding 

the events in Harry Potter — word problems are short and terse. Every 

piece of information counts and is not repeated, unless the writer is 

deliberately being perverse (or is a lousy writer). This is a unique genre 

of writing that does not occur ANYWHERE but school, but it got that 

way naturally.
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But the goal must remain THE PROBLEM, and if we could teach the 

problem solving without words, we‘d be solving lots of *real* schooling 

problems.

Kids who just barely pass the ELA get sunk when they must use those 

same ELA skills AND math at the same time, but because they *are* 

passing ELA, their failures in math are attributed to the math, not to the 

double-whammy (ELA + math), and so the common conclusion is that 

they need more math drill. They get the message that they are terrible 

at math; their math experience is dummed down rather than spiced up 

(exactly the best remedy for many of them), and the spiral goes in the 

wrong direction.



52

The unique genre *encourages* students to look for its characteristics. 

We DON‖T want that result, but, in fact, this is *smart* behavior.  
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The obvious implication of ―How many pretzels were left?‖ is 

SUBTRACT.

The writer‘s deliberate deception is, well, deliberate deception, not 

math.

Other key words like ―altogether‖ for addition…
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Good problems may, because of their math, be difficult, but taking 

simple arithmetic/mathematical tasks and making them deliberately 

confusing does not promote better mathematical learning. It simply 

becomes a contest between child and teacher/writer. Bad model!
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Each of these is a quote from a current math text for elementary school.

―Solve the following problems‖ teaches students not to read, because if they skip over 
it entirely, they‘d still do the problems. It also seems to imply we think they‘re stupid. 
Students naturally fill in blanks, sometimes even when they shouldn‘t! To be literate 
mathematically, they need to recognize ―where the action is‖ (e.g., blanks) and what is 
the appropriate action to take.  In my opinion, we still have too much of this kind of 
thing—publishers need it for reviewers—but we have less than most texts.

―For problems 4-6, use the table below…‖  When we go to a restaurant, we read prices 
on a menu. We don‘t expect a sign to say ―prices are on the menu.‖  When a 
newspaper article has a table or graph, it may refer to data in it, but it doesn‘t say ―look 
at the table to understand this article‖ or even ―look at the graph to see how much the 
cost grew.‖ Only when there is an ambiguity (e.g., multiple tables) should the text say 
which to look at. To be literate, students need to learn to scan for information, to look 
for tables or graphs, and to figure out what is the relevant information. When there are 
many problems on a page, there are still ways of making clear which ones go with 
which information without literally spelling it out. Spelling such things out treats 
students as non-thinkers. Again, we still have this occasionally, but much less than in 
most texts.

―The following ideas will help you learn…‖ Just wasted words. If they won‘t help me 
learn, they shouldn‘t be here. And besides, I want to do the learning, not hear about 
doing the learning. We have none of this at all.

―Many students learn…‖ And some don‘t. Besides, I want to learn math, not 
psychology or pedagogy. We have none of this at all.

Kids are bored by this writing, and should be.  It is not directed where their minds are.
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Many pages in most elementary school math books have a lot of text on 

them. 

It is important to teach students to be able to read mathematically, and 

many schools have instituted reading and writing across the curriculum, 

but doing two hard things at the same time is no favor to learning. 

Mathematics has invented its various special forms—symbols, 

formulas, tables, graphs—precisely because words are cumbersome for 

expressing these ideas.

Students will learn to read math story problems, and to write open-

response answers for tests, but must first have the ideas—not just facts 

and procedures, but understanding and images—in mind, and to show

they understand by doing. After doing, they learn to say. Then write. 
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Observed: a sixth-grade worksheet was using the context of building a 

table to present area and perimeter problems, and asked students how 

much Formica the builder would need for the surface of the table and 

how much stripping he would need.  For most of the students, 

―stripping‖ was distracting and funny not just because of what it 

conjured up in their minds, but because that is the only meaning of the 

word that they knew. And, for many, Formica had no meaning at all. 

Because they are not sure whether unfamiliar terms are important to 

know or not, or even whether or not they are mathematical terms, this 

just stops them in their tracks.

The anatomy of a word problem: see next slide.
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One solution. Take any ―word problem‖ and omit the question. 

Then ask what questions CAN be asked of this information.

Who left more? How many more did Ben leave? Could they have 

started with the same number of pretzels? Could Ben have started with 

6 pretzels? How many, altogether (yes, the key word), were left? How 

many pretzels did Ben eat? Right, we can‘t answer that last one, but we 

CAN ask it. And what information would we need in order to answer it? 

And what information might we like to ADD to this problem?

If Ben started with 5 more pretzels than his sister, what can we say? 

(ANYTHING?)

Let the kids build up possible word problems, learning the structure of 

word problems by experiencing, first hand, how they are constructed.

For more about this approach, see 

http://thinkmath.edc.org/index.php/Headline_Stories.
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In general, the approach should not be ―what should I do?‖ but ―what 

can I do?‖
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Saying ―this is a prism and that is not a prism‖ or ―a prism has two 

bases‖ is not a communicative use of the word. It merely shows that we 

know what a prism is, but doesn‘t help us say anything we could not 

have said without that word.
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The yellow block in front, labeled B, is perhaps the most standard 

example of a ―prism.‖  In fact, almost all of the figures in the foreground 

of this picture are prisms!  Prisms can ―lean to the side‖ (like E and S 

near the front); they can have triangular (S) or pentagonal (green, near 

the standing L) or trapezoidal bases, or even be L-shaped (yellow) 

standing with one of its bases facing us. There are also some pyramids 

way in the distance. And some creatures (like the stacked red ones on 

the far left next to S, and the green one just behind B) that are neither 

prisms nor pyramids. 



64

Shape I has six faces. Its top and bottom face are congruent oblong 

rectangles. The other four faces are trapezoids and they look like 

they‘re congruent, too. Shape J has two square faces and eight 

triangular faces. It‘s also the only shape we have that has more faces 

than vertices. Every other shape has either more vertices than faces, or 

are pyramids, which have the same number of vertices as faces.
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After a bunch of experience with prisms and non-prisms, a definition could make sense, but any definition before describing the great variety of prisms would be misunderstood.

What can we *say* about prisms?  We can look for patterns that characterize prisms. Here‘s one. 

How many vertices on the triangular prism? Well, three are touching the table, and three are around the top, so 6.  How many on the square prism? Four touching the table, and four around the top, so 8. Can we 

see some general principle yet (not just a pattern, but a reason for the pattern) or do we need more data?

And how many faces on the triangular prism.  Well, one ―side face‖ for each side of the floor triangle, so 3 side faces, and then the top and bottom. What about the square prism?  Well 4 side faces and then the top 

and bottom.  Any general principle or do we need more data?

In both, we have more vertices than faces.  This is only two cases, so maybe we can‘t generalize yet!  But maybe we *can* come up with some way of thinking about it to decide whether that‘s likely to happen *only* 

these two times, a few times more, often, or always.

By the way, why do we need such fancy words as ―faces‖ and ―vertices‖?  What‘s wrong with ―side‖ and ―corner‖?  The problem with those words is that they‘re ambiguous.  If I tell you to stand in the corner of the 

(rectangular) room, you are likely to find the place where two walls meet. If I ask you how many corners there are, you might well say four. But, for a spider, the room has eight corners!  Eight places where two walls 

and a floor or ceiling meet.  So ―corner‖ is not quite clear any more. There is nothing wrong with saying that a triangle has three corners -- it may not be ―grown up‖ vocabulary, but it is not ambiguous. But in 3-D, 

―corner‖ *IS* ambiguous, so we don‘t use it.  The places (line segments) where two faces meet are called ―edges.‖ The places (single points) where three or more faces meet are called ―vertices.‖ We use new words 

not just because ―that‘s how it is said‖ but because they help us communicate clearly.

In the same way, when I ask you how many ―sides‖ a square (like the top of the green prism) has, and you say 4, you are referring to the line segments that surround that square.  If I then ask you how many ―sides‖ 

that green prism has, how can you tell what I mean?  Am I still talking about line segments (in which case the answer is 12) or about 2-D shapes that make up the walls, ceiling, and floor of that leaning room? Again, 

we choose a new word -- face -- to refer clearly, and only to walls, ceiling, and floor. 

[Note to presenter: I don‘t bring this up in presenting because it is too technical, but people sometimes ask, so I include it in the notes. I‘ve avoided using the word ―base.‖ That‘s also a very useful term, but it‘s 

miserably difficult to get clear. Like all words, it helps to know not only what it *is*, but also what it is not. It is *not* ―whatever face the object happens to be sitting on at the moment.‖  In slide 20, the ―house‖ and 

―chair‖ shaped prisms (N and Q) are standing so that they look like a house and a chair.  In casual English, the word ―base‖ means ―whatever fact the object would normally sit on,‖ (like the base of a lamp or the 

basement of a building), but mathematics uses the word ―base‖ in the sense of ―the *basis* for this construction, ―the polygon that the 3-D structure is based on.‖  R is clearly ―based on‖ a triangle. With any prism 

whose faces are all some kind of parallelogram (like D), *any* face could be the basis, so what the ―base‖ is  can‘t be defined neatly. The way D is set in this picture makes it appear to be ―based on‖ a square, but it 

could actually be ―based on‖ any of its faces.  A similar ambiguity occurs with pyramids. If one face is not a triangle, and all the others are, then the non-triangle is the face that the pyramid ―is based on‖ and so it is 

the base. If *all* of the faces are triangles, then any one of them *could* be the base (and the pyramid might lean or otherwise look as if it has been knocked over, but life is just like that sometimes!).  In teaching, 

use base *in context* and avoid technicalities, because *definition* is a horrible mess, and we either wind up defining it wrong or, in an effort to get it right, make the definition so complex that nobody understands 

anyway.]
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Why puzzles?

Kids feel really victorious (smart) when they solve these puzzles.  Why? 

Probably because we‘ve evolved to feel that way! Our victories are not 

with teeth or claws or swiftness, but with brains, so the triumph of the 

brain gives us that victorious feeling.

Cats play/practice pouncing, and they sharpen their claws by 

scratching.  We play/practice by using our brains, and our neural 

pleasure center says ―yeah, do that more‖ because, for our species, 

sharpening our wits means survival. If we need more evidence to 

believe that, consider that Sudoku and cross-word and word-search 

puzzles have absolutely no ―practical, real world‖ utility, but are so 

popular that they sell in *super-markets.* People have different tastes in 

challenge -- and some get scared out of expressing that taste or fearful 

that they will fail -- but we are build, from the start, to like challenges 

that we can meet.

And why *these* puzzles?  Because they engage the intellect and 

*also* get kids *talking*, using the language they need.
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For more about the connection between kindergarten sorting and 

solving simultaneous equations (the bridge being the adding or 

subtracting of number sentences), see 

http://thinkmath.edc.org/index.php/Cross_number_puzzles
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Kids *not* troubled by missing addends!
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Not only can we add addition sentences to get a new addition 

sentences, but we can also add subtraction sentences to get a new 

subtraction sentences.
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And can subtract subtraction statements…  In fact, once negative 

numbers are meaningful to kids, one can even ―subtract a sentence‖ 

like 4 + 5 = 9 from the 7 + 3 = 10.  The resulting numbers, in order 

would be 3, -2, and 1, which can be assembled into the sentence 3 + -2 

= 1 (or 3  – 2 = 1).
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Well, these are numbers, too! The first line says ―Five bags of one size 

plus three bags of (maybe) another size contain 23 marbles.‖ So we 

can use the logic of the cross number puzzle -- the logic of the buttons! 

-- to create a new sentence.  In this case, it looks like subtracting one 

sentence from the other is the best idea.


