CHAPTER 1

IMPORTANCE OF THE INVESTIGATION

1.1 Introduction

The purpose of this study was to develop a substantial theoretical
syllabus-driven model for the use of counterintuitive examples in the introductory
statistics course, as teachers and textbooks have expressed neither consensus nor
even internal consistency with respect to their use. Even worse, Brewer (1985)
lists several examples of best-selling introductory texts which contain any of five
types of “myths and misconceptions.” This study should be valuable to and
readily used by both mathematics education researchers as well as classroom
instructors. This is because connections are made both to instructional methods
and to learning theory constructs, and because the model of the study builds on
the familiar structure of a syllabus typical for the introductory statistics course.

While some connections with content from other mathematics and science
courses will be mentioned, the focus of this study is the introductory non—
calculus-based statistics course. Also, while many aspects of this study will apply
to the introductory statistics courses being taught in a small, but increasing
number of high schools, this study focuses primarily on the college level.

Mathematics educators continue to express their interest in the role of
intuition at many grade levels. For example, Resnick (1986, p. 162) states: “T will
propose that early intuitions about number, although providing a foundation for
varied performances, are actually based on a restricted range of mathematical
principles. These principles, if activated in school contexts, would provide an
intuitive basis for much, but not all, of the elementary school mathematics
curriculum, and would need to be enlarged in important ways to support
secondary school mathematics.  Thus, an expanded body of intuitive
mathematical knowledge must be developed if intuitively based concepts are to
continue to support learning beyond the first few years of school.” Also, the
masthead of the debut issue of Mathematics Teaching in the Middle School
(1994, p. 4) declares:
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“The focus of the journal is on intuitive, exploratory investigations that use

informal reasoning to help students develop a strong conceptual basis that leads to
greater mathematical abstraction."

This interest in intuition has implications for both instructional techniques
and curriculum development. As an example of the latter, Fischbein (1987,
pp. 212-214) lays out what he perhaps overdramatically calls “a profound,
dialectic contradiction” that has played itself out in whether textbooks are
dominated by pictorial or axiomatic development: “By exaggerating the role of
intuitive prompts, one runs the risk of hiding the genuine mathematical content
instead of revealing it. By resorting too early to a ‘purified’, strictly deductive
version of a certain mathematical domain, one runs the risk of stifling the
student’s personal mathematical reasoning instead of developing it.” This conflict
is related to the conception of the role of proof in mathematics, which has
changed over time (Barbin 1994).

Lee (1989) noticed a similar tension while teaching the introductory
statistics course. Lee found that despite the fact that statistics content has been
traditionally presented in a hierarchical “rational” sequence, students use a more
intuitive style he called the “pattern-forming” mode of learning. For example,
Lee’s students were able to work hypothesis-testing problems without under-
standing the antecedent notions of sampling theory or the Central Limit Theorem.

Watts (1991, p. 290, emphasis in original) adds:

the major difficulty that confounds beginning students and inhibits the learning of
statistics, and that distinguishes statistics from other disciplines such as
mathematics, physics, chemistry, and biology, is that the important fundamental
concepts of statistics are quintessentially abstract..... Can anyone draw a
random variable? a mean? a variance? probability? .... Even the most
elementary statistics course, however, is concerned with drawing inferences about
phenomena in the real world on the basis of data obtained from experiments.
Consequently, students in elementary statistics courses must not only grapple
with truly abstract concepts, but they must immediately relate and apply these
concepts to reality.

While this study indicates ways in which statistics concepts such as means can be

made more concrete than Watts suggests, Watts’ comments nevertheless are an
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additional reason why the role of intuition may be especially crucial in statistics

education.

This chapter illustrates some of the ways in which intuition itself has
received much attention, but there has been relatively little focus on the role of
counterintuitive examples. As Chu and Chu (1992, p. 191) state: “The subject is
subtle and probably more difficult than it appears. A seemingly trivial problem
has been known to provoke very heated arguments among students, teachers,
professional engineers, and scientists, all of whom can come up with apparently
flawless arguments to support divergent conclusions.”

Indeed, life itself is filled with important situations in which the “true
situation” or the “correct action” seems contrary to one’s initial intuition:
Weightlifters’ workouts build muscle by first tearing it down, a patient is
inoculated for a disease with an injection of the associated virus, an airline
passenger is told to secure her own emergency oxygen mask before attending to
her child, medicines (or household cleaning chemicals) may be individually
helpful but hazardous in combination, the longer of two long-distance calls (or
flights) may actually be less expensive, a skidding driver is told to turn his wheels
in the direction he is skidding, a batter is told he can hit a fastball farther than a
ball pitched towards him at a slower speed, etc. Perhaps the state of affairs is best
expressed by G. K. Chesterton (1959, p. 81): “The real trouble with this world of
ours is not that it is an unreasonable world, nor even that it is a reasonable one.
The commonest kind of trouble is that it is nearly reasonable, but not quite.”
Those that insist upon limiting curriculum to intuitive examples are denying
Davis and Hersh’s (1981, pp. 174—175) examples of how mathematics can and
does involve going from order to order, order to chaos, chaos to chaos, and chaos
to order. Furthermore, the current curriculum already contains many ideas that
are not intuitive, as will be discussed in section 4.7.

Bringing this back to the specific field of concern is Fischbein (1987,

p.- 96, emphasis in original):

The student has to learn that in science and in mathematics not everything is
intuitively understandable, visually or behaviorally representable, that many
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statements express logical implications of generalizations going beyond the
limited possibilities offered by the empirical, common conditions of our terrestrial
life. If there is an intuition to be created here it is the intuition of the non-
intuitive, the intuitive understanding of the fact that many concepts are by their
very nature beyond our intuitive capabilities, although rationally valid. Such an
intuitive understanding is also attainable by experience—the experience of the
non-representable although intellectually manipulable notion. One lives the
conflict and the displeasure, one lives the effort to overcome the conflict, one
lives, finally, the acceptance as clear and intellectually consistent of the particular
statement or notion. Such an intuition expressed in accepting the non-intuitive as
meaningful on logical grounds represents a fundamental acquisition of science
and mathematics education .

Like Watts’ quotation, Fischbein’s statement does not perfectly apply to our study
in statistics education. For one thing, most examples which are initially
counterintuitive can be eventually given an intuitive basis. Also, there is a
distinction to be made (which is done in section 3.1) between non-intuitive and
counterintuitive. Nevertheless, the spirit of this quotation helps create a context
for discussion.

Because of differences in usage, it is necessary to clarify the usage of the
term “statistics” that will be used. Shaughnessy (1992, p. 465) follows the
European convention of using the word “stochastics” to include probability and
statistics. Derry et al. (in press, p.23) choose “instead to employ the more
familiar term ‘statistics’, but to use it in the broadest sense to refer to both
probability and statistics.” Indeed, introductory college courses involving both
probability and statistics are more likely to use the word “statistics” in the course
title than to use the phrase “probability and statistics,” and certainly never seem to
use the word probability alone.

This study adopted Derry’s convention because many if not most
American researchers and classroom teachers seem unfamiliar with and confused
by the use of the term “stochastics.” In addition to familiarity and brevity, there
is one additional reason for preferring the term “statistics” to “probability and
statistics.” There is a trend among statistics educators to emphasize data analysis
(even perhaps renaming the course “introduction to data analysis”) and keep

probability theory to a minimal, as-needed basis. One final point is that although
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some statistics educators (e.g., Moore 1988, 1993) feel that statistics should not

be considered a branch of mathematics, this is a debate that will not be addressed
in this study.

The role of intuition in university statistics education has not always
received the attention it is now getting. As Shaughnessy (1992, p. 466) relates:
“Most of the courses in probability and statistics that are offered at the university
level continue to be either rule-bound recipe-type courses for calculating
statistics, or overly mathematized introductions to statistical probability that were
the norm a decade ago (Shaughnessy 1977). Thus, college level students, with all
their prior beliefs and conceptual misunderstandings about stochastics, rarely get
the opportunity to improve their statistical intuition ... . University courses may,
therefore, only make a bad situation worse, by masking conceptual and
psychological complexities in the subject.”

Educators now seem to be stressing the importance of statistics intuition.
According to the National Council of Teachers of Mathematics (1989, p. 169):
“Students must acquire intuitive notions of randomness, representativeness and
bias in sampling to enhance their ability to evaluate statistical claims. These
understandings would give students the appropriate tools for rejecting such
television advertising claims as one that portrays a series of people choosing the
same commercial toothpaste.” The NCTM (1991, p. 137) also makes this
recommendation for the preparation of middle school and high school teachers:
“Potential misuses of statistics and common misconceptions of probability should
be discussed.” The need for new instructional approaches is in part called for by
studies which “show that some misconceptions are quite widespread and can
persist in spite of relevant information” (Garfield and Ahlgren, 1988, p. 51).

The importance of statistics intuition is reflected not only in the reform
movement, but also in research, assessment, and curriculum development.
According to Shaughnessy (1992, p. 465), “Intuitions, preconceptions,
misconceptions, misunderstandings, non-normative explanations—whatever one
might call them—abound in the research on learning probability and statistics.”
Joan Garfield and Cliff Konold have been developing (NSF Grant No. MDR-
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8954626) an instrument called “Statistical Reasoning Assessment,” which has an

entire subtest called “Intuitive Thinking.” There is even a body of research
emerging on “intuitive statistical inference in infrahumans” (Shimp and
Hightower, 1990)!

Exercises in some widely used current introductory statistics textbooks
explicitly expose students to their misconceptions. For example, exercise 4.26 in
Moore and McCabe (1993, p. 304) asks students which of the following
sequences is the most likely outcome of rolling a die with four green and two red
faces: RGRRR, RGRRRG, GRRRRR. The authors then tell the student that “[i]n
a psychological experiment, 63% of 260 students who had not studied probability
chose the second sequence. This is evidence that our intuitive understanding of
probability is not very accurate.”  Other exercises (e.g., exercise 4.53, p. 337)
force students not only to determine a correct answer, but also to “[e]xplain to the
gambler what is wrong with his [incorrect] reasoning.”

Operational definitions of intuition as well as a distinction between non-
intuitive and counterintuitive are provided in sections 2.2 and 3.1, respectively.
Shaughnessy (1992, p. 480) says that “[i]ntuitions can mislead and promote
misconceptions of scientific reality, as well as provide simplifying cognitions of
that reality.” Therefore, an intuition of the counterintuitive “... is particularly
important in some branches of mathematics such as probability and statistics in
which many phenomena conflict with our initial cognitive beliefs.”

This spirit seems to echo the broader statement of Westcott (1968,
pp. 197-198):

If one leads an examined cognitive life, one finds that many of these shared
logical constraints are probabilistic in nature, that is, they do not always hold.
One finds that the information which can be gained in a situation does not always
lend itself to the conventional treatment of a classical syllogism or progressive
uncertainty reduction. Perhaps the most important constraints one can acquire
concern the conditions under which other constraints should be followed and
when they should not. An individual should eventually arrive at a point in
education where he has a great many useful implicit and explicit constraints, but
among them should be some programs which lead to the breaking of other
constraints. This may often be the most important step in reaching the solution to
a problem: knowing when to ignore the explicit information of the conventional
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sources and when to ignore the conventional operations—knowing when to begin
flying by the seat of one’s pants, while others stare mutely at the obviously
broken compass.

One application of this quotation to statistics involves helping students know
when, for example, certain heuristics (e.g., availability, representativeness) they
may have are appropriate as is and when they need to be modified, as is discussed
in chapter 4.

The extent that statistics may have the plurality of counterintuitive results
in mathematics may explain why little has been specifically written about
counterintuitive results, as statistics education is a much newer field of research
than mathematics education in general. Only recently (e.g., Cleary 1992, Lock
and Lock 1993) are connections starting to be made between the two. Because
researchers have noted some very real differences between mathematics and
statistics (e.g., Moore 1993), it is still not clear whether all the work that has been
done on mathematics intuition will readily transfer.

As discussed in sections 4.1 and 4.2, the Traditional Position in statistics
education has been largely to avoid counterintuitive examples. Many educators
and researchers in mathematics and science education, however, have argued such
examples can make many significant positive contributions. This so-called
Alternative Position is developed in sections 4.3 and 4.4. These two positions
will be further analyzed and then reconciled in a new syllabus-driven paradigm
in the remainder of chapter 4.

Perhaps the greatest testimony to the importance of having a clear
perspective concerning the role of intuitive and counterintuitive examples in
statistics education comes from Shaughnessy (1992, pp. 488—490). It is telling
that most of the seven items identified in his suggestions for future research in
statistics education explicitly refer to intuitions, conceptions or misconceptions.
For example, one of Shaughnessy’s recommendations is: “At the pre-service
level, we will need to develop courses which meet [statistics] misconceptions and
beliefs head on, and sensitize our prospective teachers to the prevalent

misconceptions they can expect to encounter in their own students. The
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instructional experiences we design in [statistics] for teachers should be informed

by our research.” Also, “Clinical teaching experiments that carefully document
changes in students’ [statistics] conceptions, beliefs, and attitudes over long
periods of time are needed to obtain a clearer picture of the cognitive and
affective development in [statistics].” Ulep (1990, pp. 59-60) catalogues some of
these teacher misconceptions: “Many education majors who already had a course
in statistics thought that the average of numbers that include zero is the same as
the average with zero excluded (Mevarech, 1983). A majority of them compute
the ordinary average in problems requiring the weighted average. This finding
agrees with that of Pollatsek, Lima and Well (1981)... And some of them
[preservice mathematics teachers] have difficulties with or misconceptions of
permutations (Ball, 1988)....” It turns out that grappling with a particular
counterintuitive situation in statistics, namely Simpson’s Paradox (which will be
discussed in detail in section 3.3), may have a positive effect on such
misconceptions involving weighted averages.

Clearly, there are implications of this study not only for pedagogical
strategies (which are discussed in chapters 5 and 6), but also for curriculum
design. Currently, textbooks handle this in a multitude of ways: including
counterintuitive situations in the main body of the text, briefly describing them in
optional enrichment sidebar sections, including one among the end-of-chapter
exercises but omitting it from the expository part of the chapter, or omitting them
entirely. For example, some introductory textbooks (e.g., Devore and Peck 1990)
do not mention Simpson’s Paradox at all, some discuss it in a section marked
“optional” (e.g., Cryer and Miller 1991), and Moore and McCabe (1993,
section 2.5) involve Simpson’s Paradox in the only three-way table example in
the text as well as in every three-way table exercise following that section! Also,
there is not consistency between or even within textbooks with respect to whether
or not to “telegraph” that an example will yield a counterintuitive result. (The
“telegraphing” issue is discussed in section 4.6.)

Finally, no discussion of the power of paradox would be complete without

this quotation from Rapoport (1967, p. 50):
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Paradoxes have played a dramatic part in intellectual history, often foreshadowing
revolutionary developments in science, mathematics, and logic. Whenever, in
any discipline, we discover a problem that cannot be solved within the conceptual
framework that supposedly should apply, we experience shock. The shock may
compel us to discard the old framework and adopt a new one. It is to this process
of intellectual molting that we owe the birth of many of the major ideas in
mathematics and science. The paradox of incommensurables (exemplified by the
diagonal of a square, which cannot be related to the sides of the square in terms of
rational numbers) led to the concept of the continuum. Zeno’s paradox of
Achilles and the tortoise gave birth to the idea of convergent infinite series.
Antimonies (internal contradictions in mathematical logic) eventually blossomed
into Godel’s theorem.

Rapoport continues his list by citing paradoxes in science that helped lead to the
theory of relativity, quantum mechanics and the link between information and
entropy.

Falleta (1983, pp. xvii—xviii) explains the meaning of the term:

The word itself comes from the Greek (para and doxos), meaning ‘beyond belief’.
As used today, the term “paradox” covers a range of meanings, with its most
general reference being to any statement or belief that is contrary to expectation
or received opinion. The definitions of paradox ... [involve] basically three
meanings: (1) a statement that appears contradictory but which is, in fact, true;
(2) a statement that appears true but which, in fact, involves a contradiction; and
(3) a valid or good argument that leads to contradictory conclusions.

While a logician might only recognize the third type, this study uses a broader,
more everyday definition, corresponding mostly to the spirit of Falleta’s first
definition.

1.2 Applications Outside the Introductory College Statistics Course

While the focus of this study has been declared to be the introductory
college statistics course, Chu and Chu (1992, p. 191) discuss the use of
counterintuitive examples before college: “Probability has been suggested for
inclusion in the high school or even junior high school curriculum. The
suggestion appeals to many because probability is viewed as a natural and
intuitive subject manageable with very simple mathematics. It is also a good

foundation for understanding statistics, which is in prevalent use in today’s
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society. ...  Unfortunately, the apparent simplicity of probability is quite

deceiving.”

One should, however, not expect the use of counterintuitive examples to
be as effective below the secondary-school level. For example, Piaget (1975,
p.- 214) states (and somewhat overstates): “During the first of these three periods
(before seven or eight years), the child does not distinguish the possible from the
necessary. ... Thus we could not consider his anticipations as judgments of
probability, deriving from a greater or lesser degree of subjective certitude,
because this certitude is only the product of a failure to differentiate between
practical notions of intuitive probability and caprice.” Piaget also notes (p. 193)
that concepts such as permutations are operations on operations and are thus
acquired only at the level of formal thought, usually no sooner than age 14.

Applications can also be made to courses taken after the introductory
college course. Counterintuitive examples that can be encountered in an
introductory course are often special cases of more general counterintuitive
phenomena that can be further encountered and analyzed in later statistics
courses. For example, Samuels (1993, p. 87) states that “Simpson’s Paradox is
actually no more paradoxical than the reversal or distortion of association in other
settings, no more, for instance, than the familiar fact that a partial regression
coefficient can have a different sign from a simple regression coefficient.”
Romano and Siegel (1986) discuss a large catalog of examples (e.g., Stein’s
Paradox) for students in advanced or mathematical statistics courses.

In addition to extension to later statistics courses, there are often
connections that can be made between counterintuitive situations in statistics and
objects from other branches of mathematics. For example, Lord (1990) shows
that Simpson’s Paradox can be represented using arguments of complex numbers,
linear transformations of the plane, and determinants of matrices. The NCTM
(1989, p. 146) strongly supports utilizing such opportunities for multiple
representations.

It should be noted that some of the authors who are cited in this study

(e.g., Gordon, Fischbein) address all branches of mathematics, not just statistics.
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Indeed, most teachers of the introductory course do not have an advanced degree

in statistics and typically teach other courses as well. The paradoxes listed in
sections 1.1 and 3.1 are just some of the many in other branches of mathematics.
Others are presented in forums such as the “Fallacies, Flaws, and Flimflam”
column of the College Mathematics Journal or in sources such as Gordon (1991),
Eves (1990), or Falletta (1990). In summary, the results of this study are by no
means intended to be applicable only to statistics courses, although those courses

were the study’s focus.

1.3 Looking Ahead

Chapter 2 discusses many classifications of intuition and identifies which
ones are most relevant to the present study. Chapter 3 presents an operational
definition of counterintuitive and a set of four criteria for counterintuitive
examples, and thorough discussion of representative examples of these. Chapter
4 analyzes two opposing points of view (mentioned in section 1.1) concerning the
use of counterintuitive examples, and offers a syllabus-driven model of synthesis
that clearly defines the roles of intuitive examples and counterintuitive examples
as well as addresses specific concerns. Chapter 5 explores the model’s
connections to cooperative learning, structured controversies and constructivism.
Chapter 6 summarizes the entire study and then points out problematic issues and

directions for future research.
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CHAPTER 2

CLASSIFICATIONS OF INTUITION

2.1 The Relationship Between Statistics and Cognition

There are many special connections between learning theory, intuition and
statistics. Moses (1986, p. 6) notes that the development of psychology has been
“interwoven with the development of statistical theory. Karl Pearson and R.A.
Fisher, but also C.E. Spearman, and much later Harold Hotelling and S.S. Wilks,
found the source of much of their work in psychological inquiries.” Westcott
(1968, p. 191, emphasis in original) proposes that intuition is most valuable in
situations “in which information, explicitness, and redundancy are just not
available,” situations which often characterize real-world statistics situations.
After all, statistics is often thought of as decision-making under uncertainty, or, to
quote the title of a popular book (Tanur et al., 1989), “a guide to the unknown.”
The philosopher A. Ewing (1941, p. 102) concludes that “inference and intuition
are linked together. Inference always presupposes intuition to provide the links in
inference, but on the other hand inference is needed to support, prepare for, and
develop intuition.”

Gigerenzer and Murray (1987) explore these and other links as they
examine theory construction in psychology through “the metaphor of the mind as

2

an intuitive statistician (p. 1ix).” Their examples include Neyman-Pearson
statistical hypothesis testing (p. 42) in a theory of signal detection and
discrimination, random walks (p. 120) in R. Ratcliff’s model of memory retrieval
and storage, two-way ANOVA (p. 177) in H. H. Kelley’s model of causal
reasoning and Bayes’ theorem (p. 147) in a model of rationality.

Also, Scholz (1991, p. 237) gives a comprehensive table of eight research
paradigms on probability learning that includes normative models such as
Bernoulli series, contingency measures, and the likelihood principle. Goertzel

(1993) cites Monte Carlo and simulated annealing methods in his exploration of
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thought as optimization. Finally, Girosi (1994) adds “... the problem of learning

to perform some task from a set of examples. In mathematical terms this is
equivalent to reconstructing a function from a set of sparse data points (the
examples). Therefore, approximation theory and statistics are the appropriate

mathematical framework for neural networks.”

2.2 Operational Definition of Intuition

Even statistical concepts with the objective reputation of hypothesis
testing can involve intuition. As Egon Pearson (1962, pp. 395-396) states: “Of
necessity, as it seemed to us, we [Neyman and Pearson] left in our mathematical
model a gap for the exercise of a more intuitive process of personal judgment in
such matters ... as the choice of the most likely class of admissible hypotheses,
the appropriate significance level, the magnitude of worthwhile effects and the
balance of utilities.”

The term intuition has gone through many forms in the fields of
philosophy and psychology. In philosophy, Westcott (1968, p. 22) explains how
the scope of the definition has become progressively reduced, from Classical
(which considers intuition as “an experience of ultimate truth, precluded by
reason, and is antithetical to reason”) to Contemporary (“the immediate
apprehension of limited basic truths [e.g., deductive logic, mathematical axioms,
causality, etc.] which are applicable to the problems of the intellect”), to
Inferential (“rejects both the notion of immediate evidence and the notion of
truth. ... Truth is to be understood as either a set of conventions or a set of
probability statements, both subject to change™). Westcott (1968, pp. 48—-53) also
offers a history of intuition among mathematicians, such as Polya and Poincaré¢,
and offers a distinction between mathematical intuitionism and philosophical
intuitionism.  While of intrinsic interest to scholars such as historians and
philosophers, this is of limited direct applicability to the main focus of this study.

In attempting to define this elusive term for cognitive psychologists,
Fischbein (1987, p. x) states a working definition which is perhaps closest to the

aforementioned Contemporary school: “An intuition is, then, such a
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crystallized—very often prematurely closed—conception in which incom-

pleteness or vagueness of information is masked by special mechanisms for
producing the feelings of immediacy, coherence and confidence. Such mech-
anisms have been described in the research literature, but very often without any
apparent connection with a theory of intuition. ... Studies in overconfidence, in
subjective probabilities, findings referring to mental models, to typical errors in
naive physics, to misconceptions in mathematics, to the evolution of logical
concepts in children, etc., represent, in fact, rich potential sources for a theory
of intuition.”

Indeed, Fischbein goes on (pp. 5—6, emphasis in original) to discuss how
this feature of immediacy is perhaps the only common property of the many terms
(e.g., insight, revelation, inspiration, common sense, naive reasoning, empirical
interpretation, self-evidence) and related areas of cognitive investigation:
“Problem solving (illumination, heuristics, anticipatory schemas, etc.); Images
and models (intuitive representations, intuitive models, intuitive didactical
means, thinking in images, etc.); belief and levels of confidence; developmental
stages of intelligence (Piaget has described intuitive thinking as a preoperational
stage).”

Fischbein’s working definition of intuition is consistent with usage by

[3

decision researchers such as Hogarth (1987, p. 1): “... for the most part
judgments are made intuitively—that is, without apparent reasoning and almost
instinctively.” We will see later in this section that this sense of intuition will
correspond to what Fischbein calls a primary intuition. Fischbein (p. 57) reviews
previous descriptions and classifications of intuition by Henri Poincaré (1920), M.
R. Westcott (1968) and Beth and Piaget (1966).

According to Fischbein, Piaget makes a distinction between empirical and
operational intuitions, and the latter category can be further dichotomized either
into intuitions expressed by images versus intuitions referring to logico-
mathematical concepts, or into geometrical intuitions versus operations with
discrete objects. Fischbein (pp. 58, 66) faults Piaget for too much generality in

his use of the term intuition: “In Piaget’s terminology an intellectual activity is
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either intuitive or formal. Consequently, almost every intellectual activity the

child is
able to perform before the formal operational period may be considered as being
achieved on an intuitive basis ... Piaget does not explicitly distinguish, at the
concrete-operational level, cognitions which are intuitive and cognitions which
are operational without being intuitive.”

Fischbein then describes his own classification of intuitions based on what
he calls roles (actually, the stage in the problem solving process) and also a
classification based on origins (i.e., whether it originated before or after formal
instruction). This latter classification, which concerns mainly intuitions at the
initial stage of the problem solving process, will be the focus of this study for
many reasons. Perhaps the strongest reason is compatibility with virtually any
study involving interventions to influence conceptions. For example, this
distinction between primary and secondary intuitions seems shared in spirit, if not
in terminology, by Lembke and Reys (1994), who explore the development and
interaction of “intuitive and school-taught ideas.”

Fischbein (1987, pp. 64—68, emphasis in original) states:

Primary intuitions refer to those cognitive beliefs which develop in individuals
independently of any systematic instruction as an effect of their personal
experience. ... Primary intuitions may be either pre-operational or
operational. ... The category of secondary intuitions implies the assumption that
new intutions, with no natural roots, may be developed. Such intuitions are not
produced by the natural, normal experience of an individual. Moreover, very
often they contradict the natural attitude towards the same question. According to
our primary intuitions, we tend to consider that in order to keep the velocity of a
moving body constant, a force is necessary.... If for a mathematician the
equivalence between an infinite set and a proper subset of it becomes a belief—a
self-explanatory conception—then a new, secondary intuition has appeared.

As Shaughnessy (1992, p. 480) adds:

Primary intuitions are the ideas and beliefs that we have before instructional
intervention; secondary intuitions are restructured cognitive beliefs that we accept
and use as a result of instruction or experience within a particular cultural
community. ... For Fischbein, the process of replacing a primary intuition by a
secondary one is not a gradual process [as Piaget might argue]; it takes place as a
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whole, all at once. This is very much like the “Aha” experience in gestalt
psychology—the moment of discovery or insight in the problem-solving process.

Fefter (1988, p. 40) details how this Gestalt assumption of organization,
like the constructivist perspective which will be discussed in section 5.3, has
“been advanced in opposition to a major aspect of the Cartesian world view,
namely, the assumption that the essential properties of being are those of a
clockwork or machine. More particularly, the Cartesian view would have it that
nature is comprised of separate self-contained units of ‘such and such’ properties
that can be combined in terms of laws governing the functioning of machines.”
Later Feffer suggests (p. 61) that “our constructionist and Gestalt assumptions
have led to a view of consolidative integration in which the individual is able to
anticipate the consequences of his activity in terms of a higher, more inclusive

level of organization, namely, in terms of the scheme as a transformation law.”

2.3 Pedagogical Applications of Intuition

There are textbooks with titles such as Statistics: An Intuitive Approach
(Weinberg et al. 1981) and The Probability Tutoring Book: An Intuitive Course
for Engineers and Scientists (and Everyone Else!) (Ash 1993), and the peda-
gogical literature is rich with ways in which intuition can be utilized in statistics
courses. Most of these fall into the following non-exhaustive set of three

categories: conceptual, geometric and numerical.

2.3.1 Conceptual Intuition

In addition to the occasional introductory books (e.g., Haack 1979) which
focus on conceptual intuition almost to the exclusion of formulas or symbolic
language, there are a number of individual articles which suggest metaphors to
enhance communication of statistics concepts. Evans (1986) illustrates the
concepts of null hypothesis, Type I error, Type II error, and power with the fairly
common ‘“‘courtroom” metaphor. He then extends it to include a “detective
searching for clues” in that chances of discovering significant evidence against

null hypothesis increase if the search can be narrowed by a more specific hunch
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(one-tailed test), but decrease if the search must extend to both possible locations
(two-tailed test). Evans also uses the metaphor of the relative positions of
neighboring merry-go-round horses to illustrate patterns of positive, negative and
no correlation between two variables. Weaver (1992, p. 178) uses falling leaves
to illustrate confidence intervals: “As the trees shed their leaves, piles form
around the trunks. ... Imagine standing next to a tree’s trunk [estimated
population mean] and picking up a leaf [sample mean] from the [normal-shaped]
pile ... . How sure are you that this leaf came from the same tree and not a
neighboring one?” Additional examples of such bridging analogies and anchors
are included in section 4.7. These examples are particularly helpful to students

who are less threatened by conceptual language than by symbolic formulas.

2.3.2 Geometric Intuition

The use of geometric intuition in teaching statistics has seen some
increasing popularity as a bridge between the “cookbook” and overly
mathematized approaches mentioned in section 1.1, especially in medium-level
statistics courses. As Saville and Wood (1986, p. 205) state: “The bulk of
commonly used contemporary statistical methods is based on a relatively simple
application of the mathematics of Euclidean N-dimensional space.” The authors
demonstrate how to introduce students to “the theory and methods of analysis of
variance and regression in a rigorous but elementary geometric setting, at the
same time highlighting the unity of the area,” needing only a minimal set of
vector geometric tools. Thomas and O’Quigley (1993) use geometry to illustrate
correlation and partial correlation, while Schey (1993) uses it to illustrate the

relative magnitudes of different regression sums of squares. For example, the
correlation coefficient r of the n pairs (X1, y1), ..., (Xn, Yn) 18 the cosine of ZXOY,

where X = (X1, ..., X4), Y=(Y1, ..., Yyn), Xj=Xxj—x",and Y;=y;—y . Finally,
section 3.3 discusses geometric representations of Simpson’s Paradox. Students
in an introductory class can be expected to respond best to those examples in

three or fewer dimensions. Johnson and Herr (1993) geometrically illuminate two
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initially counterintuitive situations in multiple regression, namely a large R2? with

small regression parameter t-statistics, and vice versa.

2.3.3 Numerical Intuition
One reason for the importance of numerical intuition can be illustrated by

a common instructor’s lament (Smith 1987, p. 161):

At the computational level, what many of my students lacked was a good intuition
about what was a reasonable answer. We meet extreme examples of this lack of
intuition all too frequently: negative sums-of-squares in analysis of variance and
correlation coefficients greater than unity are examples of impossible results that
commonly appear in undergraduates’ or even postgraduates’ work. ... [T]he very
people who are most likely to make mistakes in statistical calculations have the
most lax criteria for accepting a solution as plausible.

This intuition about what is a reasonable answer seems related to what
Greeno (1991) calls “number sense,” which includes numerical estimation and
quantitative judgment. Greeno’s presentation of number sense as not mere skills,
but rather a general condition of knowing in the domain of numbers and
quantities, seems quite extendable to basic reasoning in probability and statistics.
Just as Perkins and Simmons (1988, p. 307) maintain that “a student with a strong
sense that numbers provide the semantic foundation for algebra is considerably
more likely to see checking with numbers as a reasonable and rewarding course of
action,” it seems that students who know their way around the conceptual domain
of statistics would be more likely to check their answers against simulations,
diagrams, and all the other resources available to them in the domain.

Being able to sense when probabilities are significant is an important
example of numerical intuition. Nisbett, Krantz, Jepson and Kunda (1983, p. 342)

illustrate this with this thought experiment:

If someone says, “I can’t understand it; I have nine grandchildren and all of them
are boys,” the statement sounds quite sensible. The hearer is likely to agree that a
causal explanation seems to be called for. On the other hand, imagine that the
speaker says, “I can’t understand it; [ have three grandchildren and all of them are
boys.” Such a statement sounds peculiar, to say the least, because it seems
transparent that such a result could be due just to chance—that is, there is nothing
to understand. Such an intuition is properly regarded as statistical in our view.
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Garfield and Ahlgren (1988, p. 52) give another example: “[A] preference for
Brand X over Brand Y in four out of five people would typically be believed to be
clearly indicative of a general preference—although the probability of getting
such an extreme sample [either brand picked by four or five people] of 5 just by
chance is 3/8.” With more numerical intuition, students would also have a better
sense of, for example, when a difference between two groups is statistically
significant, practically significant, both, or neither.

Having a ready selection of what Greeno calls “landmarks” with common
numbers can be useful in locating oneself in the conceptual domain. For example,
it is easily verified that a right-tailed test of Hy: p = .5 for sample size n = 10
yields p-values of .05, .01, and .001, for 8, 9, or 10 successes, respectively. Also,
the number of 4-combinations chosen without replacement from 14 different
items is 1001, a nearly-round number that is used in assigning lottery probabilities
for the annual draft of the National Basketball Association. Section 3.4 explains
why it takes (In 2)N = 0.7N trials to have at least a 50-50 chance of at least one
occurrence of an event with probability 1/N. Also, it takes (In 20)N = 3N trials
for at least a 95% chance of at least one occurrence of an event with probability
I/N.  With the normal curve, students should know not only the so-called
empirical rule that about 2/3 of the data is within one standard deviation of the
mean, but also that these limits occur where direction of curvature changes.
Furthermore, Morris (1988) offers a “1/3 rule” that states that the two points on
the normal curve at 1/3 the height of the maximum height bound a range
corresponding to nearly 3 standard deviations.

It is also useful to have quick and crude, easily applied methods for
checking answers to calculations. Moses (1986, p. 137) gives an quick way to
estimate a standard error for a small (n < 15) sample by dividing the range by the
sample size n. Schuster (1993) demonstrates that p + 1/Vn is always at least a
91.0% confidence interval for the proportion p of a finite population of size N
having a given attribute, based on a random sample (with or without replacement)

of size n from the population, for all n, N, and p.
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Another use of numerical intuition is to illuminate formulas, which in turn

illuminate connections with parameters and concepts. D. E. Johnson (1989) uses
an excellent concrete guided progression of very simple data sets to illustrate
ANOVA and his method of illustrating the concepts and relationships between
between-groups and within-groups variance has been adapted to other hypothesis
testing situations as well. Johnson’s classroom results especially suggest his
technique may be useful for students who operate at a preformal level of thought,
although there are some weaknesses in his study, such as a small, non-random
sample with no control group. Several articles (e.g., Read and Riley, 1983) give
instructors methods for constructing statistics problems with simple numbers.
Another example of numerical intuition is given by Weinberg (1981,
p- 280) concerning the formula governing the F distribution, a ratio of
independent estimates of the same positive quantity. Moses (1986) presents a
formula that illustrates the regression-to-the-mean phenomenon discussed in
section 4.7.

It is worth further breaking down the category of numerical intuition into
explicit numerical intuition (as we have seen examples of) and implicit numerical
intuition. The latter type might be described with a phrase from Piaget (1975,
p- 173): “... the equivalent of the discovery of the formative operations
themselves, as distinct from the formulation.” In discussing children’s learning
about permutations (without replacement), he says (pp. 173-174): ... they will
discover the law n! = n(n—1)(n-2) ... 3-2-1; even if they do not arrive at the
explicit expression in symbols, they will at least succeed in seeing its operative
mechanism, which is all that matters to us from the analytical point of view of

probabilistic intuitions.”

2.4 Problematic Issues

2.4.1 Terminology
In addition to these aforementioned categories of intuition, there is a
plethora of related categories and terms in the literature of learning theory and

cognitive science, as applied to mathematics and science education. According to
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Roth (1990, p. 149): “Labels for this incompatible prior knowledge have

included ‘misconceptions’, ‘preconceptions’ ‘alternative  frameworks’,
‘alternative conceptual systems’, ‘alternative conceptions’, ‘children’s science’,
‘theories-in-action’, ‘intuitive theories’, ‘qualitatively different conceptions.” ”
Roth also describes (pp. 147-148) the variety of terminology applied to the
correcting of these: “...conceptual change Ilearning has been called
accommodation by Posner et al., following Piaget, and reconciliation or exchange
by Hewson and Hewson. Champagne et al. described it as the restructuring of
conceptual systems.”

In chapters 3 and 4, it will be evident that there are also a number of terms
used to refer to specific counterintuitive examples. For example, the Classifi-
cation Paradox is also known as the false positives paradox (Gonick and Smith
1993, p. 49), the prosecutor’s fallacy, and the Taxi Problem. On the other hand,
some names that sound similar (e.g., Gambler’s Fallacy and Gambler’s Ruin)
actually refer to different results.

Another point to be made is that “[p]aradoxes generally possess a good
measure of ambiguity, and their solutions frequently involve sorting out various
meanings or interpretations embedded in the ordinary language or images that
form them” (Falleta 1983, xix). Because of this, teachers must take care in
defining terms, conditioning events, sampling units, sample space, etc., and
certainly never ridicule students whose answers are quite reasonable based on
how the student completed the assumptions that were not fully provided (see

discussion of the Monty Hall problem in section 3.2, for example).

2.4.2 Measurement

In addition to the profuse number of definitions, there are also challenges
in measuring intuitive thinking. By defining intuition as (Westcott 1968, p. 100)
“the event which occurs when an individual reaches a conclusion on the basis of
less explicit information than is ordinarily required to reach that conclusion,”
Westcott (p. 101) states the problem as trying “to provide a situation in which
individuals may attempt to reach conclusions or solve problems in the presence of
varying amounts of information. Furthermore, there must be a way of appraising

how much information a given individual requires, and how much is ordinarily
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required. Finally, there must be some conclusion or solution which is consen-

sually valid.” This may be further complicated by the existence of alternative
pathways to a solution.

While Ohlsson, Ernst, and Rees (1992) have claimed success in
quantifying the somewhat related concept of “difficulty,” their focus on
subtraction methods does not seem generalizable to the much richer complexity of
the domain of statistics. In claiming that some primary intuitions are more “deep-
seated” than others, however, Clement (1993, p. 1242) offers a number of sources
for measuring deep-seatedness, all of which seem applicable to measuring
intuitiveness.  These sources include pre-postcourse tests, student-reported
measures of confidence in their answers, “spontaneous expressions of conviction
in interviews, resistance observed during tutoring, and historical parallels to
students’ alternative conceptions.” Also, Clement, Brown and Zietsman (1989)
operationally distinguish between an individual anchor (a pretest problem for
which an individual student both gave the correct answer and expressed at least a
minimum score on a confidence scale) and a group anchor (an example found to
be an individual anchor for, say, 70% of the students).

2.5 Looking Ahead

Now that a broad backdrop on intuition has been presented, chapter 3 will
distinguish between non-intuitive and counterintuitive and give some concrete
representations of counterintuitive examples from the area of statistics. Chapter 3
describes only some of the many examples from the model in chapter 4, so that

more in-depth understanding of their power and pitfalls can be obtained.

CHAPTER 3

COUNTERINTUITIVE EXAMPLES IN STATISTICS

3.1 The Meaning of Counterintuitive
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Complementing Rapoport’s examples of paradox listed in section 1.1,

Fischbein relates (1987, p. 10): “The Copernican revolution, the non-Euclidean
geometries, the special and the general theories of relativity, the findings related
to the Cantorian concept of actual infinity, etc.—all these ideas and
representations have contributed to the notion that self-evidence (i.e., intuitive
evidence) is not synonymous with certainty. More and more non-intuitive or
counterintuitive concepts have invaded science and mathematics.”

While chapter 2 sets forth the operational definition of intuition (namely
Fischbein’s  origin-based classification), the terms non-intuitive and
counterintuitive (often used interchangeably by some authors) also need to be
operationalized. For this study, the term non-intuitive refers to a topic or
situation in which the student’s foundation is so minimal that there is no intuition
of any kind for what type of results to expect or how to interpret them. (Indeed,
this is consistent with the use of the term in the quotation by Fischbein in section
1.1.) A possible example of such a concept might be a statistic based on higher
moments, such as skewness or kurtosis, especially for a multimodal distribution.
In practice, before classifying the intuitiveness of a situation, one needs to ensure
that causal and chance factors are clearly identified, because as Hogarth (1987,
p- 21) states, “even experts can make responses similar to novices when problems
are complex.” In general, it seems that the term non-intuitive is associated with
broad topics or concepts, while counterintuitiveness is associated with surprising
results of particular tangible situations.

The concern of this study, however, is with counterintuitive examples.
The term counterintuitive will assume both that a student does indeed have an
initial expectation or primary intuition (a directional hypothesis, so to speak) and
that that primary intuition with respect to a result contradicts and is, at least
initially, very resistant to the normative view. While not all students, even in a
specific target audience, can be expected to find the same things counterintuitive,
the fact that experienced teachers of statistics notice patterns in students’
difficulties yields reasonable justification for the idea that there are patterns in

what students find counterintuitive.  This parallels the group anchor of
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section 2.4.2. Fischbein’s earlier research uncovered some distinctions about

what is often found to be intuitive. Fischbein (1987, pp. 67-68) states:

subjects aged 12 more (formal operational period) possess a correct, natural,
intuitive understanding of the following probabilistic concepts: the concept of
chance and of the quantification of chances as the relationship between the
number of favorable and of all possible equally likely outcomes; the fact that
increasing the number of conditions imposed on an expected event diminishes its
chances (which corresponds to the multiplication of probabilities). By contrast,
there is no natural understanding of the compound character of some categories of
events nor of the necessity to inventory the different situations which can produce
the same event (for instance, when throwing a pair of dice, there is no intuitive
understanding of the fact that there is a difference between the probabilities of
gettting the pair 5-5 and the pair 5-6) (Fischbein, 1975, pp. 138—155).

Sometimes, distinctions of intuitiveness can be made even within the same
statistical topic. For example, Garfield and Ahlgren (1988, p. 52) illustrate
differences between the combinational and sampling forms of the
representativeness misconception. Also, the experiments of Well et al. (1990)
showed that students tended to do well on the so-called “accuracy version” but
not on the “tail version” of a question concerning the law of large numbers. As
Shaughnessy (1992, p. 478) states, “Thus, the emerging picture of students’
intuitive understanding of the law of large numbers is not a simple one; task
variables affect student performance a great deal.”

What is “counterintuitive” has had very little attention from researchers,
but will be operationally defined as a result that seems “surprising” to a high
percentage of people in a particular population at a particular time.

As stated in section 1.1, the focus of this study is students in college
introductory statistics courses, most of whom will be naive-statistical.
Shaughnessy (1992, p. 485) lists as indicators for this level of stochastics
conception:  “use of judgmental heuristics, such as representativeness,
availability, anchoring, balancing; mostly experientially based and nonnormative
responses; some understanding of chance and random events.”

It is a suggestion for future research that a survey be undertaken to see if
people in this category (or other categories, for that matter) consistently find the

same examples or results counterintuitive, and whether or not they would rank
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them in the same pattern or order of ‘“counterintuitiveness.” This empirical

ordering can be compared with a theoretical ranking based on a priori features.
For example, the averaging-the-averages misconception [falsely assuming that the
average of a set of averages equals the overall average of the individual original
numbers] is less counterintuitive than Simpson’s Paradox in that a student may
come to accept that the average of averages may not be the same as the true
overall average and yet still be quite startled to find that the direction of a
comparison of overall weighted averages can actually be the reverse of the
individual weighted averages.

To illustrate the example in the preceding paragraph, consider the data
from section 3.3. The overall male average is .55, while the average of the males-
by-department numbers 5/20 and 50/80 is .4375. The overall female average is
45, while the average of the females-by-department numbers 30/80 and 15/20 is
.5625. Now if the female ratios exceed the male ratios within each department,
then the (unweighted) average of female ratios will always exceed the
(unweighted) average of male ratios, thus preserving the direction of the
comparison. Thus, if a student has the averaging-the-averages misconception, he
or she will always be susceptible to Simpson’s Paradox.

A second example is that a student who masters the Inspection Paradox
will surely also master the average class size paradox (discussed in chapter 4), as
the latter is a special case of the former.

As Fischbein (1987, p. 70) suggests, what is considered counterintuitive
may be relative to a particular era. “It is, for instance, easier today to get used to
the Newtonian understanding of inertia—which was originally counterintuitive—
than to the relativistic interpretation of space and time.” Also (p. 63): “... the
intuitive acceptance of the fifth Euclidean postulate was so strong that it inspired
two thousand years of research in a wrong direction! It took 2000 years of
unsuccessful efforts until mathematicians dared to consider some intuitively
incredible alternatives!”

Hans Hahn (1956, p. 1976) adds:

If the use of multi-dimensional and non-Euclidean geometries for the ordering of
our experience continues to prove itself so that we become more and more
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accustomed to dealing with these logical constructs; if they penetrate into the
curriculum of the schools; if we, so to speak, learn them at our mother’s knee, as
we now learn three-dimensional Euclidean geometry, then nobody will think of
saying that these geometries are contrary to intuition. They will be considered as
deserving of intuitive status as three-dimensional Euclidean geometry is today.

Hahn’s statement blurs the distinction between constructs that are initially
intuitive and initially counterintuitive. Rice University mathematics professor
Reese Harvey liked to tell his students that some results in mathematics start off
seeming difficult, and after successful reflection or instruction, some of these
results can be “refiled” as “easy,” but others will still seem difficult. In any case,

the survey suggested earlier in this section should clarify much of this.

3.2 Criteria for Counterintuitive Examples

There are a large number of situations in statistics which can result in
counterintuitive results and sometimes widespread interest. For example, the
conditional probability problem now referred to as the “Monty Hall problem” or
the “car and goats problem” generated an outpouring of popular interest
(including front page newspaper stories) when it was published by vos Savant
(1990). It appeared in several mathematics magazines, and Barbeau (1993)
recently offered a 63-item list of references! It has also been used to demonstrate
the fallibility of intuition (e.g., Kohn 1992). Shaughnessy (1992, p. 475)

describes the problem as follows:

During a certain game show, contestants are shown three closed doors. One of
the doors has a big prize [e.g., a car] behind it, and the other two have gag gifts
[e.g., goats] behind them. The contestants are asked to pick a door. Then the
game show host, Monty [who always knows where the big prize is], opens one of
the remaining closed doors and shows it to the contestant, always revealing a gag
gift. The contestants are then given the option to stick with their original choice
or to switch to the other unopened door. What should they do?

The typical interpretation of the problem assumes that before opening
your door, Monty always first opens a different door (chosen at random from the

1 or 2 remaining doors that hide a gag gift), and then gives you the chance to
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switch. In this scenario, there was a 1/3 chance you were right in the first place

(in which case you will win if and only if you stick to that choice) and a 2/3
chance you were wrong in the first place (in which case you will win if and only if
you switch). Therefore, switching is the best strategy, winning 2/3 of the time.
By modifying assumptions about Monty’s options and motives, Foster and
George (1994) show that alternative answers such as 0, 1/2, or 1 can be
reasonable for the probability of winning with the switching strategy.

There are a number of other counterintuitive situations involving
conditional probability (Shaughnessy 1992, pp. 473—474), as well as situations
involving probabilities of disjunctive events, comparisons, randomness, and
averages. This study focuses on a representative (intended to be substantial but
not exhaustive) sample of situations chosen to meet four criteria: (1) the
situations actually occur in real-life contexts; (2) they can all be (but often are
not) discussed in an introductory statistics course; (3) they (initially at least) seem
counterintuitive to a large majority of students before instruction (i.e., a large
majority would give an nonnormative, incorrect answer; at this point, this is
supported largely by didactical writings and anecdotal observations, although it
would be straightforward to test this observation empirically on a larger scale; see
section 2.4.2); and (4) the situation be readily explained, demonstrated or
experienced through tangible heuristic explanation and/or experimentation, rather

than depending only on technical theoretical proof.

This first criterion is encouraged by the NCTM (1989, pp. 87, 105):
“... learning should be grounded in experience related to aspects of everyday
life ... The data to be gathered, organized and studied should be interesting and
relevant. ...” Also, findings by Mevarech (1983, p. 425) suggest that one reason
students may “misconceive a set of given means under simple mean computation
as a mathematical group satisfying the four properties of closure, associativity,
identity and inverse” is that they treat means as “decimals that mean nothing to
them,” as opposed to Moore’s (1993, p. 15) view of data as “numbers with a
context.” Beins (1985, p. 168) gives an additional motivation: “One of the most

obvious ways to overcome the anxiety associated with statistics is to focus
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students’ attention on various kinds of information they already have,” such as

“the myriad of claims proffered on television and in magazines.” Greeno (1991,
p- 177) insists that abstractions and symbols “should not replace experience in
conceptual environments as the main learning activity that we provide
for students.”

Some real-life situations may have important political or historical
ramifications, even if they are not likely to be personally encountered by the

students in their own lives. Konold (1991, p. 6) relates:

Students often balk when given the standard introductory problems—“What has
this got to do with anything?”” This is not to say that getting students to seriously
consider the standard problems is unimportant. But if we want to demonstrate the
broad range of probability applications, then the situations we ask students to
consider must become more complex than flipping coins, rolling dice, and blindly
selecting socks from drawers.

Konold goes on (also see Konold 1994) to give a very rich real-world situation for
the geometric distribution, namely a proposed policy in China to limit families to
one son (rather than one child). Instructors (and especially researchers), however,
should be wary of real-life situations that “are laced with contextual traps”
(Shaughnessy 1992, p. 473). An example he gives of such a trap is (emphasis in
original): “The language ‘had a heart attack and is over 55’ may be interpreted by
some people as ‘had a heart attack given that they are over 55.

It also serves many pedagogical purposes if the situations are amenable to
a diversity of representations, but that is not the main focus here. The
Classification Paradox, for example, can be set up using Bayes’ theorem, a
contingency table, a Venn diagram, a tree diagram or a reverse flow diagram.
These representations are all fairly common, except for the reverse flow diagram,
an example of which is given by Chu and Chu (1992).

There are books full of examples (e.g., Romano and Siegel, 1986) that go
well beyond an introductory course, thus violating condition #2, but nevertheless
suggesting ideas for future investigations. And, as mentioned in chapter 1,
examples such as Simpson’s Paradox can be examined in an introductory class

and examined with more generality in later classes. An example of a situation
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that would fail condition #1 is the St. Petersburg Paradox (e.g., Weaver 1963,

Falletta 1990), which is essentially that bettors should (if they behave consistently
with the expected value criterion) be willing to pay an arbitrarily large amount of
money to play a game in which the bettor flips a coin until it finally lands on
heads (say this occurs on the nth flip), at which point the bettor is given 20-!
dollars. The expected gross payoff of this bet is Y. (1/2)n 20-1 = 00, The reasons
no real-life casino offers this bet are given by Weaver (1963, p. 165): “Although
$1 million is, from the point of view of the formal theory, a very cheap entrance
ticket, it is an impossible price for me, partly because I just haven’t that kind of
money, and partly because it doubtless would ruin me to lose that amount, even if
I had it. Second, the so-called ‘infinite value’ of the St. Petersburg game depends
essentially upon the house’s being able to pay off, no matter what happens.” The
field of behavioral decision theory investigates situations in which what is
counterintuitive has more to do with human behavior than with the underlying
mathematics.

3.3 Simpson’s Paradox

As Moore and McCabe (1993) explain, relationships among three
categorical variables can be described by a three-way table of counts of percents,
which is printed as separate two-way tables for each level of the third variable. A
comparison between two variables that holds for each level of the third variables
may be changed or even reversed when the data are aggregated (i.e., summed
over all levels of the third variable). When this happens, Simpson’s Paradox has
occurred. According to Falletta (1990, p. 137), this situation is “named after the
British statistician E. H. Simpson, who first wrote about it in 1951.” There is
much literature concerning examples of Simpson’s Paradox involving real-life
comparison of overall rates, ratios, percentages, proportions, probabilities,
averages, or measurements that are weighted averages of subgroup counterparts.

Bickel et al. (1975) showed that when University of California at Berkeley
graduate school admissions were analyzed by department, women were accepted
at a higher rate then men, but were accepted at a lower rate overall (due to the

lower admission rates of departments that had more female applicants).
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Freedman et al. (1991, p. 16) discuss this same situation but do not use the term

Simpson’s Paradox. Cohen (1986, p. 34) lists many other examples that have
occurred: “Rural fertility and urban fertility can both be rising while (as a result
of population movements) aggregate fertility is falling. The morbidity of both
young and old can be improving while (as a result of shifts in the age structure)
aggregate morbidity worsens. ... The federal income tax rate for taxable income
tax returns in each of five categories of adjusted gross income declined from 1974
to 1978, but (because of category creep) the overall tax rate increased.” The
introductory textbook by Moore and McCabe (1993, pp. 188-191) gives
additional examples. Simpson’s Paradox has also been mentioned in publications
for more general audiences such as Discover (Paulos 1994).

As a final justification for the real-life importance of this particular
counterintuitive example, consider that a major provision of the $28 billion anti-
crime bill passed by the House of Representatives (Thomma 1994) is that
“[d]efendants facing the death penalty would be allowed to use racial statistics on
capital punishment as evidence of discrimination.” Moore and McCabe (1993,
p- 197) list an example where Simpson’s Paradox has in fact occurred concerning

that issue.

As stated in section 3.1, this situation can be thought of as a more
pathological case of the averaging-the-averages misconception. And as Ulep
(1990, pp. 59-60) notes, “Many education majors who already had a course in
statistics thought that the average of numbers that include zero is the same as the
average with zero excluded (Mevarech, 1983). A majority of them compute the
ordinary average in problems requiring the weighted average. This finding agrees
with that of Pollatsek, Lima and Well (1981).”

While Simpson’s Paradox itself, although not some aspects of related
generalizations (see Samuels 1993, p. 87), is well understood by statisticians, the
difficulties it poses to students have not been seriously examined or explicitly
connected to difficulties when the sample mean must be calculated as a weighted
average. Falk and Bar-Hillel (1980) are among the very few researchers who

seem to suggest such a connection.
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The following is a brief numerically streamlined illustration, involving the

three categorical variables of gender (male or female), department (social
sciences or physical sciences), and employment status (hired or denied). From
the 2x2x2 table below, it is routine to verify that within each department, women
are hired at a higher rate than men (since

30/80 =.375>.25=5/20 and 15/20 = .75 > .625 = 50/80),

yet are hired at a lower rate than men for the overall aggregate situation:

£80(.375) +20(.75) } / 100 = 45 < .55 = {20(.25) + 80(.625) } / 100

department: S P
gender: m f m f

hired 5 30 50 15
denied 15 50 30 5
applied 20 80 80 20

As Paik explains (1985, p. 53): “The paradox is more clearly visualized by the
circle graph [in which each circle represents a gender-department combination,
the y-coordinate of the center of each circle is the subgroup-specific hiring rate,

and the area of each circle is proportional to the sample size of its associated
subgroup] when we use the ... ordinary correlation coefficient r applied to two
dichotomous variables.” The circle graph in Figure 1 shows that the within-group
correlations (represented by the top two circles and the bottom two circles) each
have the same sign, a sign which is different from the overall correlation
(represented by all four circles), “since the two larger circles on the negative
diagonal dominate the positive ones. ... By varying the positions and sizes of the
circles in Figure 1, one can easily see that all of the 33 combinations for the three
correlations are actual possibilities.” Despite the clear insight provided by this
representation (which relies only on informal uses of scatterplots, correlations and
regression slopes, which are all standard topics in an introductory course) it has

not been incorporated into introductory textbooks.
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Figure 1

Simpson’s Paradox: Circle Graph
(adapted from Paik 1985)
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Tan (1986) provides yet another geometric representation of Simpson’s
Paradox which is built only on the observation that “[t]he length of any line
segment which is parallel to the two bases and has its endpoints on the nonparallel
sides of a trapezoid is the weighted mean of the lengths of the two bases.” This
relationship can be quickly derived algebraically by setting the usual formula for
the area of the overall trapezoid equal to the sum of the areas of the two smaller
trapezoids formed by the new segment. Applying this to our university
employment example, each gender would have a trapezoid in which the two bases
represent the two departments. The trapezoids have two bases and one leg in

common, as shown in Figure 2:
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Figure 2
Simpson’s Paradox: Geometric Representation
(adapted from Tan 1986)
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Finally, Falk and Bar-Hillel (1980, p. 107) suggest a concrete representation

involving a platform scale:

Suppose a set of uniform blocks arranged in stacks of varying heights is located
on a weightless platform, which is balanced on a pivot located at the center of
gravity. ... One can ... shift the entire construction to the right, while
simultaneously moving individual blocks to other stacks on their left. If done
appropriately, the net result could then be a new center of gravity which is to the
left of the old one.
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Figure 3

Simpson’s Paradox: Platform Scale Representation
(adapted from Falk and Bar-Hillel 1980)
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This third representation is limited to numerical examples in which the subgroup
weighting numbers are multiples of each other (20 and 80, in this case) and the
total number in each overall group is the same (there are 100 men and 100
women). The platform scale representation, however, is readily extended to more
than two stacks (departments, in this case). This example is convenient to
construct because the four gender-department hiring proportions are all multiples
of one-eighth and the two overall gender hiring proportions are nearly multiples
of one-sixteenth. In fact, a single physical model could be built with a horizontal
scale that goes in both directions, and be turned 180° to represent the other
gender’s situation. On the other hand, a side-by-side comparison of two platform

scales keeps the subgroup and overall comparison in view.
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The platform scale representation is clearly the most concrete of the three

discussed in this section, and should therefore be the first one used (following
Bruner’s suggested progression of concrete before iconic and abstract) in a
classroom setting. Furthermore, the fact that the unweighted mean is often
described in terms of a platform scale model makes the representation very
natural to build on to generalize to the weighted means that Simpson’s Paradox
involves. Students can certainly see with this representation that, for example, the
weighted average and unweighted average of two stacks (i.e., averages) will be
the same (i.e., have the same balance point) only if the sizes of the stacks are
equal. Algebraically, (nx"+my’)/(n+m)=(x"+y") /2 implies m =n.

In any case, students can readily verify for themselves that the paradox
exists, and they often respond (perhaps as much to this counterintuitive example
as any other, before the introduction of a clarifying representation such as the
“circle graph”) with statements such as: “It’s correct, but I still don’t believe it.”
As Confrey (1990, p. 111) states, “Ironically, in most formal knowledge, students
distinguish between believing and knowing. To them there is no contradiction in
saying, ‘I know that such and such is considered to be true, but I do not believe
it.” To a constructivist, knowledge without belief is contradictory.” Thus, the
relationship between constructivism and the use of counterintuitive examples
needs further examination in light of the current call in mathematics education
reform for more constructivist styles of teaching. This will be examined further
in section 5.3, and may also be related to proofs which are convincing yet produce
no understanding (Barbin 1994).

The particular reaction to a conflicting comparison may have an affective
component as well, such as anxiety or cognitive dissonance in the face of two
competing claims, a situation that often occurs in the media with stories on what
increases cholesterol or cancer risk. A teacher could have a structured contro-
versy with Simpson’s Paradox by giving each four-student group, the Bickel data
set (as simplified in Mitchem 1989), for example, and assign students within the
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group roles such as “women’s advocate,” “university counsel,” etc. After a while,
students will believe the paradox “can happen” and can then be asked (in the

unlikely event that they themselves don’t ask), “When does it happen?”
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At this point the instructor can suggest that the students explore this

paradox not only algebraically (e.g., Mitchem 1989, Lord 1990), but also
geometrically (e.g., Paik 1985, Tan 1986) and physically (e.g., Falk and Bar-
Hillel, 1980). Lord (1990), for example, shows that Simpson’s Paradox can be
represented using arguments of c