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CHAPTER 1 
 

IMPORTANCE OF THE INVESTIGATION 
 
1.1  Introduction 
 The purpose of this study was to develop a substantial theoretical 
syllabus-driven model for the use of counterintuitive examples in the introductory 
statistics course, as teachers and textbooks have expressed neither consensus nor 
even internal consistency with respect to their use.  Even worse, Brewer (1985) 
lists several examples of best-selling introductory texts which contain any of five 
types of “myths and misconceptions.”  This study should be valuable to and 
readily used by both mathematics education researchers as well as  classroom 
instructors.  This is because connections are made both to instructional methods 
and to learning theory constructs, and because the model of the study builds on 
the familiar structure of a syllabus typical for the introductory statistics course. 
 While some connections with content from other mathematics and science 
courses will be mentioned, the focus of this study is the introductory non–
calculus-based statistics course.  Also, while many aspects of this study will apply 
to the introductory statistics courses being taught in a small, but increasing 
number of high schools, this study focuses primarily on the college level.   
 Mathematics educators continue to express their interest in the role of 
intuition at many grade levels.  For example, Resnick (1986, p. 162) states: “I will 
propose that early intuitions about number, although providing a foundation for 
varied performances, are actually based on a restricted range of mathematical 
principles.  These principles, if activated in school contexts, would provide an 
intuitive basis for much, but not all, of the elementary school mathematics 
curriculum, and would need to be enlarged in important ways to support 
secondary school mathematics.  Thus, an expanded body of intuitive 
mathematical knowledge must be developed if intuitively based concepts are to 
continue to support learning beyond the first few years of school.”  Also, the 
masthead of the debut issue of Mathematics Teaching in the Middle School  
(1994, p. 4) declares:  
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“The focus of the journal is on intuitive, exploratory investigations that use 
informal reasoning to help students develop a strong conceptual basis that leads to 
greater mathematical abstraction."   
 This interest in intuition has implications for both instructional techniques 
and curriculum development.  As an example of the latter, Fischbein (1987, 
pp. 212–214) lays out what he perhaps overdramatically calls “a profound, 
dialectic contradiction” that has played itself out in whether textbooks are 
dominated by pictorial or axiomatic development:  “By exaggerating the role of 
intuitive prompts, one runs the risk of hiding the genuine mathematical content 
instead of revealing it.  By resorting too early to a ‘purified’, strictly deductive 
version of a certain mathematical domain, one runs the risk of stifling the 
student’s personal mathematical reasoning instead of developing it.”  This conflict 
is related to the conception of the role of proof in mathematics, which has 
changed over time (Barbin 1994).  
 Lee (1989) noticed a similar tension while teaching the introductory 
statistics course.  Lee found that despite the fact that statistics content has been 
traditionally presented in a hierarchical “rational” sequence, students use a more 
intuitive style he called the “pattern-forming” mode of learning.  For example, 
Lee’s students were able to work hypothesis-testing problems without under-
standing the antecedent notions of sampling theory or the Central Limit Theorem. 
 Watts (1991, p. 290, emphasis in original) adds: 
 
the major difficulty that confounds beginning students and inhibits the learning of 
statistics, and that distinguishes statistics from other disciplines such as 
mathematics, physics, chemistry, and biology, is that the important fundamental 
concepts of statistics are quintessentially abstract. ... .  Can anyone draw a 
random variable?  a mean?  a variance? probability? … .  Even the most 
elementary statistics course, however, is concerned with drawing inferences about 
phenomena in the real world on the basis of data obtained from experiments.  
Consequently, students in elementary statistics courses must not only grapple 
with truly abstract concepts, but they must immediately relate and apply these 
concepts to reality.  
  
While this study indicates ways in which statistics concepts such as means can be 
made more concrete than Watts suggests, Watts’ comments nevertheless are an 
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additional reason why the role of intuition may be especially crucial in statistics 
education. 
 This chapter illustrates some of the ways in which intuition itself has 
received much attention, but there has been relatively little focus on the role of 
counterintuitive examples.   As Chu and Chu (1992, p. 191) state:  “The subject is 
subtle and probably more difficult than it appears.  A seemingly trivial problem 
has been known to provoke very heated arguments among students, teachers, 
professional engineers, and scientists, all of whom can come up with apparently 
flawless arguments to support divergent conclusions.”   
 Indeed, life itself is filled with important situations in which the “true 
situation” or the “correct action” seems contrary to one’s initial intuition:  
Weightlifters’ workouts build muscle by first tearing it down, a patient is 
inoculated for a disease with an injection of the associated virus, an airline 
passenger is told to secure her own emergency oxygen mask before attending to 
her child, medicines (or household cleaning chemicals) may be individually 
helpful but hazardous in combination, the longer of two long-distance calls (or 
flights) may actually be less expensive, a skidding driver is told to turn his wheels 
in the direction he is skidding, a batter is told he can hit a fastball farther than a 
ball pitched towards him at a slower speed, etc.  Perhaps the state of affairs is best 
expressed by G. K. Chesterton (1959, p. 81):  “The real trouble with this world of 
ours is not that it is an unreasonable world, nor even that it is a reasonable one.  
The commonest kind of trouble is that it is nearly reasonable, but not quite.”  
Those that insist upon limiting curriculum to intuitive examples are denying 
Davis and Hersh’s (1981, pp. 174–175) examples of how mathematics can and 
does involve going from order to order, order to chaos, chaos to chaos, and chaos 
to order.  Furthermore, the current curriculum already contains many ideas that 
are not intuitive, as will be discussed in section 4.7. 
 Bringing this back to the specific field of concern is Fischbein (1987, 
p. 96, emphasis in original): 
 
The student has to learn that in science and in mathematics not everything is 
intuitively understandable, visually or behaviorally representable, that many  
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statements express logical implications of generalizations going beyond the 
limited possibilities offered by the empirical, common conditions of our terrestrial 
life.  If there is an intuition to be created here it is the intuition of the non-
intuitive, the intuitive understanding of the fact that many concepts are by their 
very nature beyond our intuitive capabilities, although rationally valid.  Such an 
intuitive understanding is also attainable by experience—the experience of the 
non-representable although intellectually manipulable notion.  One lives the 
conflict and the displeasure, one lives the effort to overcome the conflict, one 
lives, finally, the acceptance as clear and intellectually consistent of the particular 
statement or notion.  Such an intuition expressed in accepting the non-intuitive as 
meaningful on logical grounds represents a fundamental acquisition of science 
and mathematics education . 
 
Like Watts’ quotation, Fischbein’s statement does not perfectly apply to our study 
in  statistics education.  For one thing, most examples which are initially 
counterintuitive can be eventually given an intuitive basis.  Also, there is a 
distinction to be made (which is done in section 3.1) between non-intuitive and 
counterintuitive.  Nevertheless, the spirit of this quotation helps create a context 
for discussion.   
 Because of differences in usage, it is necessary to clarify the usage of the 
term “statistics” that will be used.  Shaughnessy (1992, p. 465) follows the 
European convention of using the word “stochastics” to include probability and 
statistics.  Derry et al. (in press, p. 23) choose “instead to employ the more 
familiar term ‘statistics’, but to use it in the broadest sense to refer to both 
probability and statistics.”  Indeed,  introductory college courses involving both 
probability and statistics are more likely to use the word “statistics” in the course 
title than to use the phrase “probability and statistics,” and certainly never seem to 
use the word probability alone.   
 This study adopted Derry’s convention because many if not most 
American researchers and classroom teachers seem unfamiliar with and confused 
by the use of the term “stochastics.”  In addition to familiarity and brevity, there 
is one additional reason for preferring the term “statistics” to “probability and 
statistics.”  There is a trend among statistics educators to emphasize data analysis 
(even perhaps renaming the course “introduction to data analysis”) and keep 
probability theory to a minimal, as-needed basis.   One final point is that although 
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some statistics educators  (e.g., Moore 1988, 1993) feel that statistics should not 
be considered a branch of mathematics, this is a debate that will not be addressed 
in this study. 
 The role of intuition in university statistics education has not always 
received the attention it is now getting.  As Shaughnessy (1992, p. 466) relates:  
“Most of the courses in probability and statistics that are offered at the university 
level continue to be either rule-bound recipe-type courses for calculating 
statistics, or overly mathematized introductions to statistical probability that were 
the norm a decade ago (Shaughnessy 1977).  Thus, college level students, with all 
their prior beliefs and conceptual misunderstandings about stochastics, rarely get 
the opportunity to improve their statistical intuition … .  University courses may, 
therefore, only make a bad situation worse, by masking conceptual and 
psychological complexities in the subject.” 
 Educators now seem to be stressing the importance of statistics intuition.  
According to the National Council of Teachers of Mathematics (1989, p. 169):  
“Students must acquire intuitive notions of randomness, representativeness and 
bias in sampling to enhance their ability to evaluate statistical claims.  These 
understandings would give students the appropriate tools for rejecting such 
television advertising claims as one that portrays a series of people choosing the 
same commercial toothpaste.”  The NCTM (1991, p. 137) also makes this 
recommendation for the preparation of middle school and high school teachers:  
“Potential misuses of statistics and common misconceptions of probability should 
be discussed.”  The need for new instructional approaches is in part called for by 
studies which “show that some misconceptions are quite widespread and can 
persist in spite of relevant information” (Garfield and Ahlgren, 1988, p. 51).  
 The importance of statistics intuition is reflected not only in the reform 
movement, but also in research, assessment, and curriculum development.  
According to Shaughnessy (1992, p. 465), “Intuitions, preconceptions, 
misconceptions, misunderstandings, non-normative explanations—whatever one 
might call them—abound in the research on learning probability and statistics.”  
Joan Garfield and Cliff Konold have been developing (NSF Grant No. MDR- 
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8954626) an instrument called “Statistical Reasoning Assessment,” which has an 
entire subtest called “Intuitive Thinking.”  There is even a body of research 
emerging on “intuitive statistical inference in infrahumans” (Shimp and 
Hightower, 1990)! 
 Exercises in some widely used current introductory statistics textbooks 
explicitly expose students to their misconceptions.  For example, exercise 4.26 in 
Moore and McCabe (1993, p. 304) asks students which of the following 
sequences is the most likely outcome of rolling a die with four green and two red 
faces:  RGRRR, RGRRRG, GRRRRR.  The authors then tell the student that “[i]n 
a psychological experiment, 63% of 260 students who had not studied probability 
chose the second sequence.  This is evidence that our intuitive understanding of 
probability is not very accurate.”    Other exercises  (e.g., exercise 4.53, p. 337) 
force students not only to determine a correct answer, but also to “[e]xplain to the 
gambler what is wrong with his [incorrect] reasoning.”   
 Operational definitions of intuition as well as a distinction between non-
intuitive and counterintuitive are provided in sections 2.2 and 3.1, respectively. 
Shaughnessy (1992, p. 480) says that “[i]ntuitions can mislead and promote 
misconceptions of scientific reality, as well as provide simplifying cognitions of 
that reality.”  Therefore, an intuition of the counterintuitive “… is particularly 
important in some branches of mathematics such as probability and statistics in 
which many phenomena conflict with our initial cognitive beliefs.”    
 This spirit seems to echo the broader statement of Westcott (1968, 
pp. 197–198): 
 
If one leads an examined cognitive life, one finds that many of these shared 
logical constraints are probabilistic in nature, that is, they do not always hold.  
One finds that the information which can be gained in a situation does not always 
lend itself to the conventional treatment of a classical syllogism or progressive 
uncertainty reduction.  Perhaps the most important constraints one can acquire 
concern the conditions under which other constraints should be followed and 
when they should not.  An individual should eventually arrive at a point in 
education where he has a great many useful implicit and explicit constraints, but 
among them should be some programs which lead to the breaking of other 
constraints.  This may often be the most important step in reaching the solution to 
a problem:  knowing when to ignore the explicit information of the conventional  



7 

 

sources and when to ignore the conventional operations—knowing when to begin 
flying by the seat of one’s pants, while others stare mutely at the obviously 
broken compass. 

One application of this quotation to statistics involves helping students know 
when, for example, certain heuristics (e.g., availability, representativeness) they 
may have are appropriate as is and when they need to be modified, as is discussed 
in chapter 4. 
 The extent that statistics may have the plurality of counterintuitive results 
in mathematics may explain why little has been specifically written about 
counterintuitive results, as statistics education is a much newer field of research 
than mathematics education in general.  Only recently (e.g., Cleary 1992, Lock 
and Lock 1993) are connections starting to be made between the two.  Because 
researchers have noted some very real differences between mathematics and 
statistics (e.g., Moore 1993), it is still not clear whether all the work that has been 
done on mathematics intuition will readily transfer. 
 As discussed in sections 4.1 and 4.2, the Traditional Position in statistics 
education has been largely to avoid counterintuitive examples.  Many educators 
and researchers in mathematics and science education, however, have argued such 
examples can make many significant positive contributions.  This so-called 
Alternative Position is developed in sections 4.3 and 4.4.  These two positions 
will be further analyzed and  then reconciled in a new syllabus-driven paradigm 
in the remainder of chapter 4. 
 Perhaps the greatest testimony to the importance of having a clear 
perspective concerning the role of intuitive and counterintuitive examples in 
statistics education comes from Shaughnessy (1992, pp. 488–490).  It is telling 
that most of the seven items identified in his suggestions for future research in 
statistics education explicitly refer to intuitions, conceptions or misconceptions.   
For example, one of Shaughnessy’s recommendations is: “At the pre-service 
level, we will need to develop courses which meet [statistics] misconceptions and 
beliefs head on, and sensitize our prospective teachers to the prevalent 
misconceptions they can expect to encounter in their own students.  The  
 



8 

 

instructional experiences we design in [statistics] for teachers should be informed 
by our research.”  Also, “Clinical teaching experiments that carefully document 
changes in students’ [statistics] conceptions, beliefs, and attitudes over long 
periods of time are needed to obtain a clearer picture of the cognitive and 
affective development in [statistics].” Ulep (1990, pp. 59–60) catalogues some of 
these teacher misconceptions: “Many education majors who already had a course 
in statistics thought that the average of numbers that include zero is the same as 
the average with zero excluded (Mevarech, 1983).  A majority of them compute 
the ordinary average in problems requiring the weighted average.  This finding 
agrees with that of Pollatsek, Lima and Well (1981) …  And some of them 
[preservice mathematics teachers] have difficulties with or misconceptions of 
permutations (Ball, 1988) … .”  It turns out that grappling with a particular 
counterintuitive situation in statistics, namely Simpson’s Paradox (which will be 
discussed in detail in section 3.3), may have a positive effect on such 
misconceptions involving weighted averages. 
 Clearly, there are implications of this study not only for pedagogical 
strategies (which are discussed in chapters 5 and 6), but also for  curriculum 
design.  Currently, textbooks handle this in a multitude of ways: including 
counterintuitive situations in the main body of the text, briefly describing them in 
optional enrichment sidebar sections, including one among the end-of-chapter 
exercises but omitting it from the expository part of the chapter, or omitting them 
entirely.  For example, some introductory textbooks (e.g., Devore and Peck 1990) 
do not mention Simpson’s Paradox at all, some discuss it in a section marked 
“optional” (e.g., Cryer and Miller 1991), and Moore and McCabe (1993, 
section 2.5) involve Simpson’s Paradox in the only three-way table example in 
the text as well as in every three-way table exercise following that section!  Also, 
there is not consistency between or even within textbooks with respect to whether 
or not to “telegraph” that an example will yield a counterintuitive result.  (The 
“telegraphing” issue is discussed in section 4.6.) 
 Finally, no discussion of the power of paradox would be complete without 
this quotation from Rapoport (1967, p. 50): 
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Paradoxes have played a dramatic part in intellectual history, often foreshadowing 
revolutionary developments in science, mathematics, and logic.  Whenever, in 
any discipline, we discover a problem that cannot be solved within the conceptual 
framework that supposedly should apply, we experience shock.  The shock may 
compel us to discard the old framework and adopt a new one.  It is to this process 
of intellectual molting that we owe the birth of many of the major ideas in 
mathematics and science.  The paradox of incommensurables (exemplified by the 
diagonal of a square, which cannot be related to the sides of the square in terms of 
rational numbers) led to the concept of the continuum.  Zeno’s paradox of 
Achilles and the tortoise gave birth to the idea of convergent infinite series.  
Antimonies (internal contradictions in mathematical logic) eventually blossomed 
into Gödel’s theorem.   

Rapoport continues his list by citing paradoxes in science that helped lead to the 
theory of relativity, quantum mechanics and the link between information and 
entropy.   

 Falleta (1983, pp. xvii–xviii) explains the meaning of the term: 
 
The word itself comes from the Greek (para and doxos), meaning ‘beyond belief’. 
As used today, the term “paradox” covers a range of meanings, with its most 
general reference being to any statement or belief that is contrary to expectation 
or received opinion.  The definitions of paradox … [involve] basically three 
meanings:  (1) a statement that appears contradictory but which is, in fact, true; 
(2) a statement that appears true but which, in fact, involves a contradiction; and 
(3) a valid or good argument that leads to contradictory conclusions. 
 
While a logician might only recognize the third type, this study uses a broader, 
more everyday definition, corresponding mostly to the spirit of Falleta’s first 
definition. 
 
1.2   Applications Outside the Introductory College Statistics Course  
 While the focus of this study has been declared to be the introductory 
college statistics course, Chu and Chu (1992, p. 191) discuss the use of 
counterintuitive examples before college:   “Probability has been suggested for 
inclusion in the high school or even junior high school curriculum.  The 
suggestion appeals to many because probability is viewed as a natural and 
intuitive subject manageable with very simple mathematics.  It is also a good 
foundation for understanding statistics, which is in prevalent use in today’s 
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society. …  Unfortunately, the apparent simplicity of probability is quite 
deceiving.” 
 One should, however, not expect the use of counterintuitive examples to 
be as effective below the secondary-school level.   For example, Piaget (1975, 
p. 214) states (and somewhat overstates): “During the first of these three periods 
(before seven or eight years), the child does not distinguish the possible from the 
necessary. …  Thus we could not consider his anticipations as judgments of 
probability, deriving from a greater or lesser degree of subjective certitude, 
because this certitude is only the product of a failure to differentiate between 
practical notions of intuitive probability and caprice.”  Piaget also notes (p. 193) 
that concepts such as permutations are operations on operations and are thus 
acquired only at the level of formal thought, usually no sooner than age 14. 
 Applications can also be made to courses taken after the introductory 
college course.  Counterintuitive examples that can be encountered in an 
introductory course are often special cases of more general counterintuitive 
phenomena that can be further encountered and analyzed in later statistics 
courses.  For example, Samuels (1993, p. 87) states that  “Simpson’s Paradox is 
actually no more paradoxical than the reversal or distortion of association in other 
settings, no more, for instance, than the familiar fact that a partial regression 
coefficient can have a different sign from a simple regression coefficient.”   
Romano and Siegel  (1986) discuss a large catalog of examples (e.g., Stein’s 
Paradox) for students in advanced or mathematical statistics courses. 
 In addition to extension to later statistics courses, there are often 
connections that can be made between counterintuitive situations in statistics and 
objects from other branches of mathematics.   For example, Lord (1990) shows 
that Simpson’s Paradox can be represented using arguments of complex numbers, 
linear transformations of the plane, and determinants of matrices.  The NCTM 
(1989, p. 146) strongly supports utilizing such opportunities for multiple 
representations.  
 It should be noted that some of the authors who are cited in this study 
(e.g., Gordon, Fischbein) address all branches of mathematics, not just statistics.   
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Indeed, most teachers of the introductory course  do not have an advanced degree 
in statistics and typically teach other courses as well.  The paradoxes listed in 
sections 1.1 and 3.1 are just some of the many in other branches of mathematics.  
Others are presented in forums such as the “Fallacies, Flaws, and Flimflam” 
column of the College Mathematics Journal or in sources such as Gordon (1991), 
Eves (1990), or Falletta (1990).  In summary, the results of this study are by no 
means intended to be applicable only to statistics courses, although those courses 
were the study’s focus. 
 
1.3  Looking Ahead 
 Chapter 2 discusses many classifications of intuition and identifies which 
ones are most relevant to the present study.  Chapter 3 presents an operational 
definition of counterintuitive and a set of four criteria for counterintuitive 
examples, and thorough discussion of representative examples of these.  Chapter 
4 analyzes two opposing points of view (mentioned in section 1.1) concerning the 
use of counterintuitive examples, and offers a syllabus-driven model of synthesis 
that clearly defines the roles of intuitive examples and counterintuitive examples 
as well as addresses specific concerns.  Chapter 5 explores the model’s 
connections to cooperative learning, structured controversies and constructivism.  
Chapter 6 summarizes the entire study and then points out problematic issues and 
directions for future research. 
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CHAPTER 2 
  

CLASSIFICATIONS OF INTUITION 
 
 
2.1    The Relationship Between Statistics and Cognition 
 There are many special connections between learning theory, intuition and 
statistics.  Moses (1986, p. 6) notes that the development of psychology has been 
“interwoven with the development of statistical theory.  Karl Pearson and R.A. 
Fisher, but also C.E. Spearman, and much later Harold Hotelling and S.S. Wilks, 
found the source of much of their work in psychological inquiries.”  Westcott 
(1968, p. 191, emphasis in original) proposes that intuition is most valuable in 
situations “in which information, explicitness, and redundancy are just not 
available,” situations which often characterize real-world statistics situations.  
After all, statistics is often thought of as decision-making under uncertainty, or, to 
quote the title of a popular book (Tanur et al., 1989), “a guide to the unknown.”  
The philosopher A. Ewing (1941, p. 102) concludes that “inference and intuition 
are linked together.  Inference always presupposes intuition to provide the links in 
inference, but on the other hand inference is needed to support, prepare for, and 
develop intuition.”  
 Gigerenzer and Murray (1987) explore these and other links as they 
examine theory construction in psychology through “the metaphor of the mind as 
an intuitive statistician (p.  ix).”  Their examples include Neyman-Pearson 
statistical hypothesis testing  (p. 42) in a theory of signal detection and 
discrimination, random walks (p. 120) in R. Ratcliff’s model of memory retrieval 
and storage, two-way ANOVA (p. 177) in H. H. Kelley’s model of causal 
reasoning and Bayes’ theorem (p. 147) in a model of rationality.   
 Also, Scholz (1991, p. 237) gives a comprehensive table of eight research 
paradigms on probability learning that includes normative models such as 
Bernoulli series, contingency measures, and the likelihood principle.  Goertzel  
(1993) cites Monte Carlo and simulated annealing methods in his exploration of  
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thought as optimization.  Finally, Girosi (1994) adds “… the problem of learning 
to perform some task from a set of examples.  In mathematical terms this is 
equivalent to reconstructing a function from a set of sparse data points (the 
examples).  Therefore, approximation theory and statistics are the appropriate 
mathematical framework for neural networks.” 
 
2.2  Operational Definition of Intuition 
 Even statistical concepts with the objective reputation of hypothesis 
testing can involve intuition.  As Egon Pearson (1962, pp. 395–396) states:  “Of 
necessity, as it seemed to us, we [Neyman and Pearson] left in our mathematical 
model a gap for the exercise of a more intuitive process of personal judgment in 
such matters … as the choice of the most likely class of admissible hypotheses, 
the appropriate significance level, the magnitude of worthwhile effects and the 
balance of utilities.”  
 The term intuition has gone through many forms in the fields of 
philosophy and psychology.  In philosophy, Westcott (1968, p. 22) explains how 
the scope of the definition has become progressively reduced, from Classical 
(which considers intuition as “an experience of ultimate truth, precluded by 
reason, and is antithetical to reason”) to Contemporary (“the immediate 
apprehension of limited basic truths [e.g., deductive logic, mathematical axioms, 
causality, etc.] which are applicable to the problems of the intellect”), to 
Inferential (“rejects both the notion of immediate evidence and the notion of 
truth. …  Truth is to be understood as either a set of conventions or a set of 
probability statements, both subject to change”).  Westcott (1968, pp. 48–53) also 
offers a history of intuition among mathematicians, such as Pólya and Poincaré, 
and offers a distinction between mathematical intuitionism and philosophical 
intuitionism.  While of intrinsic interest to scholars such as historians and 
philosophers, this is of limited direct applicability to the main focus of this study. 
 In attempting to define this elusive term for cognitive psychologists, 
Fischbein (1987, p. x) states a working definition which is perhaps closest to the 
aforementioned Contemporary school:  “An intuition is, then, such a  



14 

 

crystallized—very often prematurely closed—conception in which incom-
pleteness or vagueness of information is masked by special mechanisms for 
producing the feelings of immediacy, coherence and confidence.  Such mech-
anisms have been described in the research literature, but very often without any 
apparent connection with a theory of intuition. …  Studies in overconfidence, in 
subjective probabilities, findings referring to mental models, to typical errors in 
naïve physics, to misconceptions in mathematics, to the evolution of logical 
concepts in children, etc., represent, in fact, rich potential sources for a theory 
of intuition.” 
 Indeed, Fischbein goes on (pp. 5–6, emphasis in original) to discuss how 
this feature of immediacy is perhaps the only common property of the many terms 
(e.g., insight, revelation, inspiration, common sense, naïve reasoning, empirical 
interpretation, self-evidence) and related areas of cognitive investigation:  
“Problem solving (illumination, heuristics, anticipatory schemas, etc.); Images 
and models  (intuitive representations, intuitive models, intuitive didactical 
means, thinking in images, etc.); belief and levels of confidence; developmental 
stages of intelligence  (Piaget has described intuitive thinking as a preoperational 
stage).” 
 Fischbein’s working definition of intuition is consistent with usage by 
decision researchers such as Hogarth (1987, p. 1):  “… for the most part 
judgments are made intuitively—that is, without apparent reasoning and almost 
instinctively.”  We will see later in this section that this sense of intuition will 
correspond to what Fischbein calls a primary intuition.  Fischbein (p. 57) reviews 
previous descriptions and classifications of intuition by Henri Poincaré (1920), M. 
R. Westcott (1968) and Beth and Piaget (1966).   
 According to Fischbein, Piaget makes a distinction between empirical and 
operational intuitions, and the latter category can be further dichotomized either 
into intuitions expressed by images versus intuitions referring to logico-
mathematical concepts, or into geometrical intuitions versus operations with 
discrete objects.  Fischbein (pp. 58, 66) faults Piaget for too much generality in 
his use of the term intuition: “In Piaget’s terminology an intellectual activity is 
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either intuitive or formal.  Consequently, almost every intellectual activity the 
child is  
able to perform before the formal operational period may be considered as being 
achieved on an intuitive basis …  Piaget does not explicitly distinguish, at the 
concrete-operational level, cognitions which are intuitive and cognitions which 
are operational without being intuitive.” 
 Fischbein then describes his own classification of intuitions based on what 
he calls roles (actually,  the stage in the problem solving process) and also a 
classification based on origins (i.e., whether it originated before or after formal 
instruction).  This latter classification, which concerns mainly intuitions at the 
initial stage of the problem solving process, will be the focus of this study for 
many reasons.  Perhaps the strongest reason is compatibility with virtually any 
study involving interventions to influence conceptions.  For example, this 
distinction between primary and secondary intuitions seems shared in spirit, if not 
in terminology, by Lembke and Reys (1994), who explore the development and 
interaction of “intuitive and school-taught ideas.” 
 Fischbein  (1987, pp. 64–68, emphasis in original) states: 
 
Primary intuitions refer to those cognitive beliefs which develop in individuals 
independently of any systematic instruction as an effect of their personal 
experience. …  Primary intuitions may be either pre-operational or 
operational. …  The category of secondary intuitions  implies the assumption that 
new intutions, with no natural roots, may be developed.  Such intuitions are not 
produced by the natural, normal experience of an individual.  Moreover, very 
often they contradict the natural attitude towards the same question.  According to 
our primary intuitions, we tend to consider that in order to keep the velocity of a 
moving body constant, a force is necessary. …  If for a mathematician the 
equivalence between an infinite set and a proper subset of it becomes a belief—a 
self-explanatory conception—then a new, secondary intuition has appeared. 
 
 As Shaughnessy (1992, p. 480) adds: 
 
Primary intuitions are the ideas and beliefs that we have before instructional 
intervention; secondary intuitions are restructured cognitive beliefs that we accept 
and use as a result of instruction or experience within a particular cultural 
community. …  For Fischbein, the process of replacing a primary intuition by a 
secondary one is not a gradual process [as Piaget might argue]; it takes place as a 
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whole, all at once.  This is very much like the “Aha” experience in gestalt 
psychology—the moment of discovery or insight in the problem-solving process.    

 Feffer (1988, p. 40) details how this Gestalt assumption of organization, 
like the constructivist perspective which will be discussed in section 5.3, has 
“been advanced in opposition to a major aspect of the Cartesian world view, 
namely, the assumption that the essential properties of being are those of a 
clockwork or machine.  More particularly, the Cartesian view would have it that 
nature is comprised of separate self-contained units of ‘such and such’ properties 
that can be combined in terms of laws governing the functioning of machines.”  
Later Feffer suggests (p. 61) that “our constructionist and Gestalt assumptions 
have led to a view of consolidative integration in which the individual is able to 
anticipate the consequences of his activity in terms of a higher, more inclusive 
level of organization, namely, in terms of the scheme as a transformation law.” 
 
 
2.3   Pedagogical Applications of Intuition 
 There are textbooks with titles such as Statistics:  An Intuitive Approach 
(Weinberg et al. 1981) and The Probability Tutoring Book:  An Intuitive Course 
for Engineers and Scientists (and Everyone Else!) (Ash 1993), and the peda-
gogical literature is rich with ways in which intuition can be utilized in statistics 
courses.  Most of these fall into the following non-exhaustive set of three 
categories:  conceptual, geometric and numerical. 
 
2.3.1  Conceptual Intuition 
 In addition to the occasional introductory books (e.g., Haack 1979) which 
focus on conceptual intuition almost to the exclusion of formulas or symbolic 
language, there are a number of individual articles which suggest metaphors to 
enhance communication of statistics concepts.  Evans (1986) illustrates the 
concepts of null hypothesis, Type I error, Type II error, and power with the fairly 
common  “courtroom” metaphor.  He then  extends it to include a “detective 
searching for clues” in that chances of discovering significant evidence against 
null hypothesis increase if the search can be narrowed by a more specific hunch  
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(one-tailed test), but decrease if the search must extend to both possible locations 
(two-tailed test).  Evans also uses the metaphor of the relative positions of 
neighboring merry-go-round horses to illustrate patterns of positive, negative and 
no correlation between two variables.  Weaver (1992, p. 178) uses falling leaves 
to illustrate confidence intervals:  “As the trees shed their leaves, piles form 
around the trunks. …   Imagine standing next to a tree’s trunk [estimated 
population mean] and picking up a leaf [sample mean] from the [normal-shaped] 
pile … .  How sure are you that this leaf came from the same tree and not a 
neighboring one?”  Additional examples of such bridging analogies and anchors 
are included in section 4.7.  These examples are particularly helpful to students 
who are less threatened by conceptual language than by symbolic formulas. 
 
2.3.2  Geometric Intuition 
 The use of geometric intuition in teaching statistics has seen some 
increasing popularity as a bridge between the “cookbook” and overly 
mathematized approaches mentioned in section 1.1, especially in medium-level 
statistics courses.  As Saville and Wood (1986, p. 205) state:  “The bulk of 
commonly used contemporary statistical methods is based on a relatively simple 
application of the mathematics of Euclidean N-dimensional space.”  The authors 
demonstrate how to introduce students to “the theory and methods of analysis of 
variance and regression in a rigorous but elementary geometric setting, at the 
same time highlighting the unity of the area,” needing only a minimal set of 
vector geometric tools.  Thomas and O’Quigley (1993) use geometry to illustrate 
correlation and partial correlation, while Schey (1993) uses it to illustrate the 
relative magnitudes of different regression sums of squares.  For example, the 
correlation coefficient r of the n  pairs (x1, y1), …, (xn, yn) is the cosine of ∠XOY, 
where X = (X1, … , Xn), Y = (Y1, … , Yn),  Xi = xi – x´, and Yi = yi – y´.  Finally, 
section 3.3 discusses geometric representations of Simpson’s Paradox.  Students 
in an introductory class can be expected to respond best to those examples in 
three or fewer dimensions.  Johnson and Herr (1993) geometrically illuminate two  
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initially counterintuitive situations in multiple regression, namely a large R2 with 
small regression parameter t-statistics, and vice versa. 
 
2.3.3  Numerical Intuition 
 One reason for the importance of numerical intuition can be illustrated by 
a common instructor’s lament  (Smith 1987, p. 161):  
 
At the computational level, what many of my students lacked was a good intuition 
about what was a reasonable answer.  We meet extreme examples of this lack of 
intuition all too frequently:  negative sums-of-squares in analysis of variance and 
correlation coefficients greater than unity are examples of impossible results that 
commonly appear in undergraduates’ or even postgraduates’ work. …  [T]he very 
people who are most likely to make mistakes in statistical calculations have the 
most lax criteria for accepting a solution as plausible. 
 
 This intuition about what is a reasonable answer seems related to what 
Greeno (1991) calls “number sense,” which includes numerical estimation and 
quantitative judgment.   Greeno’s presentation of number sense as not mere skills, 
but rather a general condition of knowing in the domain of numbers and 
quantities, seems quite extendable to basic reasoning in probability and statistics.  
Just as Perkins and Simmons (1988, p. 307) maintain that “a student with a strong 
sense that numbers provide the semantic foundation for algebra is considerably 
more likely to see checking with numbers as a reasonable and rewarding course of 
action,” it seems that students who know their way around the conceptual domain 
of statistics would be more likely to check their answers against simulations, 
diagrams, and all the other resources available to them in the domain. 
 Being able to sense when probabilities are significant is an important 
example of numerical intuition.  Nisbett, Krantz, Jepson and Kunda (1983, p. 342) 
illustrate this with this thought experiment:  
 
If someone says, “I can’t understand it; I have nine grandchildren and all of them 
are boys,” the statement sounds quite sensible.  The hearer is likely to agree that a 
causal explanation seems to be called for.  On the other hand, imagine that the 
speaker says, “I can’t understand it; I have three grandchildren and all of them are 
boys.”  Such a statement sounds peculiar, to say the least, because it seems 
transparent that such a result could be due just to chance—that is, there is nothing 
to understand.  Such an intuition is properly regarded as statistical in our view. 
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Garfield and Ahlgren (1988, p. 52) give another example:  “[A] preference for 
Brand X over Brand Y in four out of five people would typically be believed to be 
clearly indicative of a general preference—although the probability of getting 
such an extreme sample [either brand picked by four or five people] of 5 just by 
chance is 3/8.”  With more numerical intuition, students would also have a better 
sense of, for example, when a difference between two groups is statistically 
significant, practically significant, both, or neither.  
 Having a ready selection of what Greeno calls “landmarks” with common 
numbers can be useful in locating oneself in the conceptual domain.  For example, 
it is easily verified that a right-tailed test of H0: p = .5 for sample size n = 10 
yields p-values of .05, .01, and .001, for 8, 9, or 10 successes, respectively.   Also, 
the number of 4-combinations chosen without replacement from 14 different 
items is 1001, a nearly-round number that is used in assigning lottery probabilities 
for the annual draft of the National Basketball Association.  Section 3.4 explains 
why it takes (ln 2)N ≈ 0.7N trials to have at least a 50-50 chance of at least one 
occurrence of an event with probability 1/N.  Also, it takes (ln 20)N ≈ 3N trials 
for at least a 95% chance of at least one occurrence of an event with probability 
1/N.  With the normal curve, students should know not only the so-called 
empirical rule that about 2/3 of the data is within one standard deviation of the 
mean, but also that these limits occur where direction of curvature changes.  
Furthermore, Morris (1988) offers a “1/3 rule” that states that the two points on 
the normal curve at  1/3 the height of the maximum height bound a range 
corresponding to nearly  3 standard deviations.  
 It is also useful to have quick and crude, easily applied methods for 
checking answers to calculations.  Moses (1986, p. 137) gives an quick way to 
estimate a standard error for a small (n ≤ 15) sample by dividing the range by the 
sample size n.  Schuster (1993) demonstrates that p ± 1/√n is always at least a 
91.0% confidence interval for the proportion p of a finite population of size N 
having a given attribute, based on a random sample (with or without replacement) 
of size n from the population, for all n, N, and p. 
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 Another use of numerical intuition is to illuminate formulas, which in turn 
illuminate connections with parameters and concepts.   D. E. Johnson  (1989) uses 
an excellent concrete guided progression of very simple data sets to illustrate 
ANOVA and his method of illustrating the concepts and relationships between 
between-groups and within-groups variance has been adapted to other hypothesis 
testing situations as well.  Johnson’s classroom results especially suggest his 
technique may be useful for students who operate at a preformal level of thought, 
although there are some weaknesses in his study, such as a small, non-random 
sample with no control group.  Several articles (e.g., Read and Riley, 1983)  give 
instructors methods for constructing statistics problems with simple numbers.  
Another example of numerical intuition is given by Weinberg (1981, 
p. 280)  concerning the formula governing the F distribution, a ratio of 
independent estimates of the same positive quantity.  Moses (1986) presents a 
formula that illustrates the regression-to-the-mean phenomenon discussed in 
section 4.7. 
 It is worth further breaking down the category of numerical intuition into 
explicit numerical intuition (as we have seen examples of) and implicit numerical 
intuition.  The latter type might be described with a phrase from Piaget (1975, 
p. 173):   “… the equivalent of the discovery of the formative operations 
themselves, as distinct from the formulation.”  In discussing children’s learning 
about permutations (without replacement), he says  (pp. 173–174):  “… they will 
discover the law n! = n(n–1)(n–2) … 3.2.1; even if they do not arrive at the 
explicit expression in symbols, they will at least succeed in seeing its operative 
mechanism, which is all that matters to us from the analytical point of view of 
probabilistic intuitions.” 
 
 
2.4  Problematic Issues 

2.4.1 Terminology  
 In addition to these aforementioned categories of intuition, there is a 
plethora of related categories and terms in the literature of learning theory and 
cognitive science, as applied to mathematics and science education.  According to 
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Roth (1990, p. 149):  “Labels for this incompatible prior knowledge have 
included ‘misconceptions’, ‘preconceptions’  ‘alternative frameworks’, 
‘alternative conceptual systems’, ‘alternative conceptions’, ‘children’s science’, 
‘theories-in-action’, ‘intuitive theories’, ‘qualitatively different conceptions.’ ”   
Roth also describes (pp. 147–148) the variety of terminology applied to the 
correcting of these:  “… conceptual change learning has been called 
accommodation by Posner et al., following Piaget, and reconciliation or exchange 
by Hewson and Hewson.  Champagne et al. described it as the restructuring of 
conceptual systems.” 
 In chapters 3 and 4, it will be evident that there are also a number of terms 
used to refer to specific counterintuitive examples.   For example, the Classifi-
cation Paradox is also known as the false positives paradox (Gonick and Smith 
1993, p. 49), the prosecutor’s fallacy, and the Taxi Problem.  On the other hand, 
some names that sound similar (e.g., Gambler’s Fallacy and Gambler’s Ruin) 
actually refer to different results. 
 Another point to be made is that “[p]aradoxes generally possess a good 
measure of ambiguity, and their solutions frequently involve sorting out various 
meanings or interpretations embedded in the ordinary language or images that 
form them” (Falleta 1983, xix).  Because of this, teachers must take care in 
defining terms, conditioning events, sampling units, sample space, etc., and 
certainly never ridicule students whose answers are quite reasonable based on 
how the student completed the assumptions that were not fully provided (see 
discussion of the Monty Hall problem in section 3.2, for example). 

2.4.2  Measurement 
 In addition to the profuse number of definitions, there are also challenges 
in measuring intuitive thinking.   By defining intuition as (Westcott 1968, p. 100)  
“the event which occurs when an individual reaches a conclusion on the basis of 
less explicit information than is ordinarily required to reach that conclusion,” 
Westcott (p. 101) states the problem as trying “to provide a situation in which 
individuals may attempt to reach conclusions or solve problems in the presence of 
varying amounts of information.  Furthermore, there must be a way of appraising 
how much information a given individual requires, and how much is ordinarily 
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required.  Finally, there must be some conclusion or solution which is consen-
sually valid.”  This may be further complicated by the existence of alternative 
pathways to a solution. 
 While Ohlsson, Ernst, and Rees (1992) have claimed success in 
quantifying the somewhat related concept of “difficulty,” their focus on 
subtraction methods does not seem generalizable to the much richer complexity of 
the domain of statistics.  In claiming that some primary intuitions are more “deep-
seated” than others, however, Clement (1993, p. 1242) offers a number of sources 
for measuring deep-seatedness, all of which seem applicable to measuring 
intuitiveness.  These sources include pre-postcourse tests, student-reported 
measures of confidence in their answers, “spontaneous expressions of conviction 
in interviews, resistance observed during tutoring, and historical parallels to 
students’ alternative conceptions.”  Also, Clement, Brown and Zietsman (1989) 
operationally distinguish between an individual anchor (a pretest problem for 
which an individual student both gave the correct answer and expressed at least a 
minimum score on a confidence scale) and a group anchor (an example found to 
be an individual anchor for, say, 70% of the students).   
 
2.5  Looking Ahead 
 Now that a broad backdrop on intuition has been presented, chapter 3 will 
distinguish between non-intuitive and counterintuitive and give some concrete 
representations of counterintuitive examples from the area of statistics.  Chapter 3 
describes only some of the many examples from the model in chapter 4, so that 
more in-depth understanding of their power and pitfalls can be obtained. 
 
 

CHAPTER 3 
  

COUNTERINTUITIVE EXAMPLES IN STATISTICS 
 
 
3.1   The Meaning of Counterintuitive 



23 

 

 Complementing Rapoport’s examples of paradox listed in section 1.1, 
Fischbein relates (1987, p. 10): “The Copernican revolution, the non-Euclidean 
geometries, the special and the general theories of relativity, the findings related 
to the Cantorian concept of actual infinity, etc.—all these ideas and 
representations have contributed to the notion that self-evidence (i.e., intuitive 
evidence) is not synonymous with certainty.  More and more non-intuitive or 
counterintuitive concepts have invaded science and mathematics.” 
 While chapter 2 sets forth the operational definition of intuition (namely 
Fischbein’s origin-based classification), the terms non-intuitive and 
counterintuitive (often used interchangeably by some authors) also need to be 
operationalized.  For this study,  the term non-intuitive refers to a topic or 
situation in which the student’s foundation is so minimal that there is no intuition 
of any kind for what type of results to expect or how to interpret them.  (Indeed, 
this is consistent with the use of the term in the quotation by Fischbein in section 
1.1.)  A possible example of such a concept might be a statistic based on higher 
moments, such as skewness or kurtosis, especially for a multimodal distribution.   
In practice, before classifying the intuitiveness of a situation, one needs to ensure 
that causal and chance factors are clearly identified, because as Hogarth (1987, 
p. 21) states, “even experts can make responses similar to novices when problems 
are complex.”  In general, it seems that the term non-intuitive is associated with 
broad topics or concepts, while counterintuitiveness is associated with surprising 
results of particular tangible situations. 
 The concern of this study, however, is with counterintuitive examples.  
The term counterintuitive will assume both that a student does indeed have an 
initial expectation or primary intuition (a directional hypothesis, so to speak) and  
that that primary intuition with respect to a result contradicts and is, at least 
initially, very resistant to the normative view.  While not all students, even in a 
specific target audience, can be expected to find the same things counterintuitive, 
the fact that experienced teachers of statistics notice patterns in students’ 
difficulties yields reasonable justification for the idea that there are patterns in 
what students find counterintuitive.  This parallels the group anchor of 
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section 2.4.2.  Fischbein’s earlier research uncovered some distinctions about 
what is often found to be intuitive.  Fischbein (1987, pp. 67–68) states: 
 
subjects aged 12 more (formal operational period) possess a correct, natural, 
intuitive understanding of the following probabilistic concepts: the concept of 
chance and of the quantification of chances as the relationship between the 
number of favorable and of all possible equally likely outcomes; the fact that 
increasing the number of conditions imposed on an expected event diminishes its 
chances (which corresponds to the multiplication of probabilities).  By contrast, 
there is no natural understanding of the compound character of some categories of 
events nor of the necessity to inventory the different situations which can produce 
the same event (for instance, when throwing a pair of dice, there is no intuitive 
understanding of the fact that there is a difference between the probabilities of 
gettting the pair 5-5 and the pair 5-6) (Fischbein, 1975, pp. 138–155). 
 
 Sometimes, distinctions of intuitiveness can be made even within the same 
statistical topic.  For example, Garfield and Ahlgren (1988, p. 52) illustrate 
differences between the combinational and sampling forms of the 
representativeness misconception.  Also, the experiments of Well et al. (1990) 
showed that students tended to do well on the so-called “accuracy version” but 
not on the “tail version” of a question concerning the law of large numbers.  As 
Shaughnessy (1992, p. 478) states, “Thus, the emerging picture of students’ 
intuitive understanding of the law of large numbers is not a simple one; task 
variables affect student performance a great deal.” 
 What is “counterintuitive” has had very little attention from researchers, 
but will be operationally defined as a result that seems “surprising” to a high 
percentage of people in a particular population at a particular time. 
 As stated in section 1.1, the focus of this study is students in college 
introductory statistics courses, most of whom will be naïve-statistical.  
Shaughnessy (1992, p. 485) lists as indicators for this level of stochastics 
conception:  “use of judgmental heuristics, such as representativeness, 
availability, anchoring, balancing; mostly experientially based and nonnormative 
responses; some understanding of chance and random events.”   
 It is a suggestion for future research that a survey be undertaken to see if 
people in this category (or other categories, for that matter) consistently find the 
same examples or results counterintuitive, and whether or not they would rank 
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them in the same pattern or order of “counterintuitiveness.”  This empirical 
ordering can be compared with a theoretical ranking based on a priori features.  
For example, the averaging-the-averages misconception [falsely assuming that the 
average of a set of averages equals the overall average of the individual original 
numbers] is less counterintuitive than Simpson’s Paradox in that a student may 
come to accept that the average of averages may not be the same as the true 
overall average and yet still be quite startled to find that the direction of a 
comparison of overall weighted averages can actually be the reverse of the 
individual weighted averages.  
 To illustrate the example in the preceding paragraph, consider the data 
from section 3.3.  The overall male average is .55, while the average of the males-
by-department numbers 5/20 and 50/80 is .4375.  The overall female average is 
.45, while the average of the females-by-department numbers  30/80 and 15/20 is 
.5625.    Now if the female ratios exceed the male ratios within each department, 
then the (unweighted) average of female ratios will always exceed the 
(unweighted) average of male ratios, thus preserving the direction of the 
comparison.  Thus, if a student has the averaging-the-averages misconception, he 
or she will always be susceptible to Simpson’s Paradox. 
 A second example is that a student who masters the Inspection Paradox 
will surely also master the average class size paradox (discussed in chapter 4), as 
the latter is a special case of the former. 
 As Fischbein (1987, p. 70) suggests, what is considered counterintuitive 
may be relative to a particular era.  “It is, for instance, easier today to get used to 
the Newtonian understanding of inertia—which was originally counterintuitive— 
than to the relativistic interpretation of space and time.”  Also (p. 63): “… the 
intuitive acceptance of the fifth Euclidean postulate was so strong that it inspired 
two thousand years of research in a wrong direction!  It took 2000 years of 
unsuccessful efforts until mathematicians dared to consider some intuitively 
incredible alternatives!”    
 Hans Hahn (1956, p. 1976) adds: 
 
If the use of multi-dimensional and non-Euclidean geometries for the ordering of 
our experience continues to prove itself so that we become more and more 
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accustomed to dealing with these logical constructs; if they penetrate into the 
curriculum of the schools; if we, so to speak, learn them at our mother’s knee, as 
we now learn three-dimensional Euclidean geometry, then nobody will think of 
saying that these geometries are contrary to intuition.  They will be considered as 
deserving of intuitive status as three-dimensional Euclidean geometry is today. 
 
 Hahn’s statement blurs the distinction between constructs that  are initially 
intuitive and initially counterintuitive.  Rice University mathematics professor 
Reese Harvey liked to tell his students that some results in mathematics start off 
seeming difficult, and after successful reflection or instruction, some of these 
results can be “refiled” as “easy,” but others will still seem difficult.  In any case, 
the survey suggested earlier in this section should clarify much of this. 
 
3.2   Criteria for Counterintuitive Examples 
 There are a large number of situations in statistics which can result in 
counterintuitive results and sometimes widespread interest.  For example, the 
conditional probability problem now referred to as the “Monty Hall problem” or 
the “car and goats problem” generated an outpouring of popular interest 
(including front page newspaper stories) when it was published by vos Savant 
(1990).  It appeared in several mathematics magazines, and Barbeau (1993) 
recently offered a 63-item list of references!  It has also been used to demonstrate 
the fallibility of intuition (e.g., Kohn 1992).  Shaughnessy (1992, p. 475) 
describes the problem as follows: 
 
 
During a certain game show, contestants are shown three closed doors.  One of 
the doors has a big prize [e.g., a car] behind it, and the other two have gag gifts 
[e.g., goats] behind them.  The contestants are asked to pick a door.  Then the 
game show host, Monty [who always knows where the big prize is], opens one of 
the remaining closed doors and shows it to the contestant, always revealing a gag 
gift.  The contestants are then given the option to stick with their original choice 
or to switch to the other unopened door.  What should they do? 

 The typical interpretation of the problem assumes that before opening 
your door, Monty always first opens a different door (chosen at random from the 
1 or 2 remaining doors that hide a gag gift), and then gives you the chance to 
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switch.  In this scenario, there was a 1/3 chance you were right in the first place 
(in which case you will win if and only if you stick to that choice) and a 2/3 
chance you were wrong in the first place (in which case you will win if and only if 
you switch).  Therefore, switching is the best strategy, winning 2/3 of the time.  
By modifying assumptions about Monty’s options and motives, Foster and 
George (1994) show that alternative answers such as 0, 1/2, or 1 can be 
reasonable for the probability of winning with the switching strategy.  
 There are a number of other counterintuitive situations involving 
conditional probability (Shaughnessy 1992, pp. 473–474), as well as situations 
involving probabilities of disjunctive events, comparisons, randomness, and 
averages. This study focuses on a representative (intended to be substantial but 
not exhaustive) sample of situations chosen to meet four criteria:   (1) the 
situations actually occur in real-life contexts; (2) they can all be (but often are 
not) discussed in an introductory statistics course; (3) they (initially at least) seem 
counterintuitive to a large majority of students before instruction (i.e., a large 
majority would give an nonnormative, incorrect answer; at this point, this is 
supported largely by didactical writings and anecdotal observations, although it 
would be straightforward to test this observation empirically on a larger scale; see 
section 2.4.2); and (4) the situation be readily explained, demonstrated or 
experienced through tangible heuristic explanation and/or experimentation, rather 
than depending only on technical theoretical proof.  
 
 This first criterion is encouraged by the NCTM (1989, pp. 87, 105):  
“… learning should be grounded in experience related to aspects of everyday 
life …  The data to be gathered, organized and studied should be interesting and 
relevant. …”  Also, findings by Mevarech (1983, p. 425) suggest that one reason 
students may “misconceive a set of given means under simple mean computation 
as a mathematical group satisfying the four properties of closure, associativity, 
identity and inverse” is that they treat means as “decimals that mean nothing to 
them,” as opposed to Moore’s (1993, p. 15) view of data as “numbers with a 
context.”  Beins (1985, p. 168) gives an additional motivation:  “One of the most 
obvious ways to overcome the anxiety associated with statistics is to focus 
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students’ attention on various kinds of information they already have,” such as 
“the myriad of claims proffered on television and in magazines.” Greeno (1991, 
p. 177) insists that abstractions and symbols “should not replace experience in 
conceptual environments as the main learning activity that we provide 
for students.”   
 Some real-life situations may have important political or historical 
ramifications, even if they are not likely to be personally encountered by the 
students in their own lives.  Konold (1991, p. 6) relates: 
 
Students often balk when given the standard introductory problems—“What has 
this got to do with anything?”  This is not to say that getting students to seriously 
consider the standard problems is unimportant.  But if we want to demonstrate the 
broad range of probability applications, then the situations we ask students to 
consider must become more complex than flipping coins, rolling dice, and blindly 
selecting socks from drawers. 
 
Konold goes on (also see Konold 1994) to give a very rich real-world situation for 
the geometric distribution, namely a proposed policy in China to limit families to 
one son (rather than one child).  Instructors (and especially researchers), however, 
should be wary of real-life situations that “are laced with contextual traps” 
(Shaughnessy 1992, p. 473).  An example he gives of such a trap is (emphasis in 
original):  “The language ‘had a heart attack and is over 55’ may be interpreted by 
some people as ‘had a heart attack given that they are over 55.‘ ” 
 It also serves many pedagogical purposes if the situations are amenable to 
a diversity of representations, but that is not the main focus here.  The 
Classification Paradox, for example, can be set up using Bayes’ theorem, a 
contingency table, a Venn diagram, a tree diagram or a reverse flow diagram.  
These representations are all fairly common, except for the reverse flow diagram, 
an example of which is given by Chu and Chu (1992). 
 There are books full of examples (e.g., Romano and Siegel, 1986) that go 
well beyond an introductory course, thus violating condition #2, but nevertheless 
suggesting ideas for future investigations.  And, as mentioned in chapter 1, 
examples such as Simpson’s Paradox can be examined in an introductory class 
and examined with more generality in later classes.  An example of a situation 
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that would fail condition #1 is the St. Petersburg Paradox (e.g., Weaver 1963, 
Falletta 1990), which is essentially that bettors should (if they behave consistently 
with the expected value criterion) be willing to pay an arbitrarily large amount of 
money to play a game in which the bettor flips a coin until it finally lands on 
heads (say this occurs on the nth flip), at which point the bettor is given 2n-1 
dollars.  The expected gross payoff of this bet is ∑ (1/2)n 2n-1 = ∞.  The reasons 
no real-life casino offers this bet are given by Weaver (1963, p. 165):  “Although 
$1 million is, from the point of view of the formal theory, a very cheap entrance 
ticket, it is an impossible price for me, partly because I just haven’t that kind of 
money, and partly because it doubtless would ruin me to lose that amount, even if 
I had it.  Second, the so-called ‘infinite value’ of the St. Petersburg game depends 
essentially upon the house’s being able to pay off, no matter what happens.”  The 
field of behavioral decision theory investigates situations in which what is 
counterintuitive has more to do with human behavior than with the underlying 
mathematics. 
 
3.3   Simpson’s Paradox 
 As Moore and McCabe (1993) explain, relationships among three 
categorical variables can be described by a three-way table of counts of percents, 
which is printed as separate two-way tables for each level of the third variable.  A  
comparison between two variables that holds for each level of the third variables 
may be changed or even reversed when the data are aggregated (i.e., summed 
over all levels of the third variable).   When this happens, Simpson’s Paradox has 
occurred.   According to Falletta (1990, p. 137), this situation is “named after the 
British statistician E. H. Simpson, who first wrote about it in 1951.”  There is 
much literature concerning examples of Simpson’s Paradox involving real-life 
comparison of overall rates, ratios, percentages, proportions, probabilities, 
averages, or measurements that are weighted averages of subgroup counterparts. 
 Bickel et al. (1975) showed that when University of California at Berkeley 
graduate school admissions were analyzed by department, women were accepted 
at a higher rate then men, but were accepted at a lower rate overall (due to the 
lower admission rates of departments that had more female applicants).  
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Freedman et al. (1991, p. 16) discuss this same situation but do not use the term 
Simpson’s Paradox.  Cohen (1986, p. 34) lists many other examples that have 
occurred:  “Rural fertility and urban fertility can both be rising while (as a result 
of population movements) aggregate fertility is falling.  The morbidity of both 
young and old can be improving while (as a result of shifts in the age structure) 
aggregate morbidity worsens. …  The federal income tax rate for taxable income 
tax returns in each of five categories of adjusted gross income declined from 1974 
to 1978, but (because of category creep) the overall tax rate increased.”   The 
introductory textbook by Moore and McCabe (1993, pp. 188–191) gives 
additional examples.  Simpson’s Paradox has also been mentioned in publications 
for more general audiences such as Discover (Paulos 1994). 
 As a final justification for the real-life importance of this particular 
counterintuitive example, consider that a major provision of the $28 billion anti-
crime bill passed by the House of Representatives (Thomma 1994) is that 
“[d]efendants facing the death penalty would be allowed to use racial statistics on 
capital punishment as evidence of discrimination.”  Moore and McCabe (1993, 
p. 197) list an example where Simpson’s Paradox has in fact occurred concerning 
that issue.   
 
 As stated in section 3.1, this situation can be thought of as a more 
pathological case of the averaging-the-averages misconception.  And as Ulep 
(1990, pp. 59–60) notes, “Many education majors who already had a course in 
statistics thought that the average of numbers that include zero is the same as the 
average with zero excluded (Mevarech, 1983).  A majority of them compute the 
ordinary average in problems requiring the weighted average.  This finding agrees 
with that of Pollatsek, Lima and Well (1981).”   
 While Simpson’s Paradox itself, although not some aspects of related 
generalizations (see Samuels 1993, p. 87), is well understood by statisticians, the 
difficulties it poses to students have not been seriously examined or explicitly 
connected to difficulties when the sample mean must be calculated as a weighted 
average.  Falk and Bar-Hillel (1980) are among the very few researchers who 
seem to suggest such a connection. 
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 The following is a brief numerically streamlined illustration, involving the 
three categorical variables of gender (male or female), department (social 
sciences or physical sciences), and employment status (hired or denied).  From 
the 2×2×2 table below, it is routine to verify that within each department, women 
are hired at a higher rate than men (since 

30/80 = .375 > .25 = 5/20  and 15/20 =  .75 > .625 = 50/80), 

yet are hired at a lower rate than men for the overall aggregate situation: 
 

{ 80(.375) + 20(.75) } / 100  =  .45  <  .55  = { 20(.25) + 80(.625) } / 100 
 
 

department:       S                              P                                
gender:  m        f            m          f     
hired     5      30           50      15 
denied  15      50           30        5 
applied      20      80           80      20 

 
As Paik explains (1985, p. 53): “The paradox is more clearly visualized by the 
circle graph [in which each circle represents a gender-department combination, 
the y-coordinate of the center of each circle is the subgroup-specific hiring rate,  
and the area of each circle is proportional to the sample size of its associated 
subgroup] when we use the … ordinary correlation coefficient r applied to two 
dichotomous variables.”  The circle graph in Figure 1 shows that the within-group 
correlations (represented by the top two circles and the bottom two circles) each 
have the same sign, a sign which is different from the overall correlation 
(represented by all four circles), “since the two larger circles on the negative 
diagonal dominate the positive ones. …  By varying the positions and sizes of the 
circles in Figure 1, one can easily see that all of the 33 combinations for the three 
correlations are actual possibilities.”  Despite the clear insight provided by this 
representation (which relies only on informal uses of scatterplots, correlations and 
regression slopes, which are all standard topics in an introductory course) it has  
not been incorporated into  introductory textbooks. 
 



32 

 

Figure 1 
Simpson’s Paradox:  Circle Graph 

(adapted from Paik 1985) 
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 Tan (1986) provides yet another geometric representation of Simpson’s 
Paradox which is built only on the observation that “[t]he length of any line 
segment which is parallel to the two bases and has its endpoints on the nonparallel 
sides of a trapezoid is the weighted mean of the lengths of the two bases.”  This 
relationship can be quickly derived algebraically by setting the usual formula for 
the area of the overall trapezoid equal to the sum of the areas of the two smaller 
trapezoids formed by the new segment.  Applying this to our university 
employment example, each gender would have a trapezoid in which the two bases 
represent the two departments.  The trapezoids have two bases and one leg in 
common, as shown in Figure 2: 
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Figure 2 
Simpson’s Paradox:  Geometric Representation 

(adapted from Tan 1986) 
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Finally, Falk and Bar-Hillel (1980, p. 107) suggest a concrete representation 
involving a platform scale: 
 
 
 
Suppose a set of uniform blocks arranged in stacks of varying heights is located 
on a weightless platform, which is balanced on a pivot located at the center of 
gravity. …  One can … shift the entire construction to the right, while 
simultaneously moving individual blocks to other stacks on their left.  If done 
appropriately, the net result could then be a new center of gravity which is to the 
left of the old one. 
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Figure 3 
Simpson’s Paradox:  Platform Scale Representation 

(adapted from Falk and Bar-Hillel 1980) 
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This third representation is limited to numerical examples in which the subgroup 
weighting numbers are multiples of each other (20 and 80, in this case) and the 
total number in each overall group is the same (there are 100 men and 100 
women).  The platform scale representation, however, is readily extended to more 
than two stacks (departments, in this case).  This example is convenient to 
construct because the four gender-department hiring proportions are all multiples 
of one-eighth and the two overall gender hiring proportions are nearly multiples 
of one-sixteenth.  In fact, a single physical model could be built with a horizontal 
scale that goes in both directions, and be turned 180° to represent the other 
gender’s situation.  On the other hand, a side-by-side comparison of two platform 
scales keeps the subgroup and overall comparison in view. 
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 The platform scale representation is clearly the most concrete of the three 
discussed in this section, and should therefore be the first one used (following 
Bruner’s suggested progression of concrete before iconic and abstract) in a 
classroom setting.  Furthermore, the fact that the unweighted mean is often 
described in terms of a platform scale model makes the representation very 
natural to build on to generalize to the weighted means that Simpson’s Paradox 
involves.  Students can certainly see with this representation that, for example, the 
weighted average and unweighted average of two stacks (i.e., averages) will be 
the same (i.e., have the same balance point) only if the sizes of the stacks are 
equal.  Algebraically, (nx´ + my´) / (n + m) = (x´ + y´) / 2 implies m = n. 
 In any case, students can readily verify for themselves that the paradox 
exists, and they often respond (perhaps as much to this counterintuitive example 
as any other, before the introduction of a clarifying representation such as the 
“circle graph”) with statements such as:  “It’s correct, but I still don’t believe it.”  
As Confrey (1990, p. 111) states, “Ironically, in most formal knowledge, students 
distinguish between believing and knowing.  To them there is no contradiction in 
saying, ‘I know that such and such is considered to be true, but I do not believe 
it.’  To a constructivist, knowledge without belief is contradictory.”  Thus, the 
relationship between constructivism and the use of counterintuitive examples 
needs further examination in light of the current call in mathematics education  
reform for more constructivist styles of teaching.  This will be examined further 
in section 5.3, and may also be related to proofs which are convincing yet produce 
no understanding (Barbin 1994). 
 The particular reaction to a conflicting comparison may have an affective 
component as well, such as anxiety or cognitive dissonance in the face of two 
competing claims, a situation that often occurs in the media with stories on what 
increases cholesterol or cancer risk.  A teacher could have a structured contro-
versy with Simpson’s Paradox by giving each four-student group, the Bickel data 
set (as simplified in Mitchem 1989), for example, and assign students within the 
group roles such as “women’s advocate,” “university counsel,” etc.  After a while, 
students will believe the paradox “can happen” and can then be asked (in the 
unlikely event that they themselves don’t ask), “When does it happen?”   
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 At this point the instructor can suggest that the students explore this 
paradox not only algebraically (e.g., Mitchem 1989, Lord 1990), but also 
geometrically (e.g., Paik 1985, Tan 1986) and physically (e.g., Falk and Bar-
Hillel, 1980).  Lord (1990), for example, shows that Simpson’s Paradox can be 
represented using arguments of complex numbers, linear transformations of the 
plane and determinants of matrices.  Falk and Bar-Hillel (1980) not only make a 
connection between Simpson’s Paradox and weighted averages, but also provide a 
concrete representation with blocks on a platform that can be adapted for 
classroom use (as previously discussed in this section). 
 Other questions that can be explored include whether the true mean of a 
set of data could be higher than the true mean of another set of data if all that is 
known is that the first set of data has a lower mean based on the “grouped data” 
formula that is a weighted average of class interval midpoints by class 
frequencies.   Formulas for grouped data are not uncommon in introductory 
textbooks (e.g., Lapin 1987), yet this connection to weighted averages and 
Simpson’s Paradox (all involve levels of aggregation) is virtually never made.  
Specifically, if fi, Li, Ui represent the frequency count, lower class limit, and 
upper class limit, respectively, for the ith class interval, then the grouped mean 
formula ∑ fi (Ui + Li)/2 could produce a value as large as ∑ Ui fi  or as small as ∑ 
Li fi .   
(Connections to the midpoint Riemann sum can be made here for calculus 
students.)  Also, introductory statistics courses for business students often include 
weighted aggregate price indices, which are typically ratios of weighted averages 
of prices. 
 It would also be useful to have a long-term follow-up to see whether or 
not students who grappled with Simpson’s Paradox would in fact be more critical 
users of statistics, and less likely to accept uncritically a number on their 
calculator or a graph in the newspaper.  Would it make a student more likely to 
wonder when presented with a university’s 15:1 student-faculty ratio:  “Is 15 the 
mean or the median?  Is it the average per class (and thus the average from a 
professor’s point of view) or per student?”  As Hemenway (1982) shows, the 
expected class size for a student always turns out to be at least as big as the 
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expected class size for a professor!  For a quick concrete example, consider a 
college with a 90-student class and a 10-student class.  The average class size 
from a professor’s view is (90 + 10) / 2 = 50, but from a student’s view is 
[90 (90) + 10 (10)] / 100 = 82!  Considering the immediate relevance of this to a 
college student’s situation, it is surprising that it is rarely included in introductory 
courses or textbooks.  It will, however, be included in the model in section 4.7.  
Finally, it would be useful to investigate whether the process of realizing how 
different weights make Simpson’s Paradox possible in turn is effective in helping 
students avoid the common errors with weighted averages referred to earlier in 
this section by Ulep (1990). 
 For further work which can increase student interest and confidence, 
students can be led through the work of Moses (1986) or Friedlander and Wagon 
(1993).  Moses (1986, p. 429) who, after the standard warning against combining 
2×2 contingency tables themselves, then goes a step further by demonstrating 
what he calls “a rather clear, intuitive way” to combine the information (not the 
original data) in several 2×2 contingency tables.  Friedlander and Wagon (1993, 
p. 268) pose the possibility (it is actually not possible) of a “double Simpson’s 
Paradox”: 
 
 
It is possible for there to be two batters, Veteran and Youngster, and two pitchers, 
Righty and Lefty, such that Veteran’s batting average against Righty is better than 
Youngster’s average against Righty, and Veteran’s batting average against Lefty 
is better than Youngster’s average against Lefty, but yet Youngster’s combined 
batting average against the two pitchers is better than Veteran’s. … [I]s it possible 
to have the situation just described and, at the same time, have it be the case that 
Righty is a better pitcher than Lefty against either batter, but Lefty is a better 
pitcher than Righty against both batters combined? 
 
 Finally, an instructor can ask students to compare the dynamics of 
Simpson’s Paradox with other reversal paradoxes such as the “test-drive paradox” 
of Falletta (1990, p. 142): 
 
The man’s test results clearly show that the attribute of being luxuriously 
comfortable is found more frequently among American-made cars than among 
European-made cars, as is the attribute of being economical.  However, there is 
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only one American-made car tested that has both attributes, whereas there are two 
European-made cars with both attributes.  Thus, the conjunction of the two 
desired characteristics is found more frequently among European-made cars 
despite the fact that taken separately each individual attribute occurs more 
frequently among the American-made cars. 
 
Or the paradox of voting (Falleta 1990, pp. 182, 185) in which “the moderate 
candidate in pairwise races against either the liberal candidate or the conservative 
candidate wins the election.  Yet, in the three-way race, it is the moderate 
candidate who is excluded from the runoff race. …  In other words, although the 
ranking of the candidates is transitive for an individual, the society’s ranking is 
non-transitive.”  Falleta explains that a voting system in which the majority’s 
choice always wins has been proven to be impossible without violating certain 
basic conditions of democracy. 
 
3.4    Probabilities Involving Disjunctive Events 
 Another major source of counterintuitive situations involves what 
Shaughnessy (1977, p. 306) refers to as “the deceptive nature of the probability of 
disjunctive events.”  Disjunctive refers to the “or” logical operator, or union, and 
is involved in the probability that at least one of a number of simple events 
occurs.  In simplified language, when there are a large number n of opportunities 
for an unlikely event (with probability p) to happen, the overall probability that it 
happens at least once can become high surprisingly quickly.  Students often 
overestimate the probability, by using the incorrect formula np—which can 
exceed the logical upper bound of 1—instead of the correct formula 1 – (1 – p)n.  
Also, students tend to overestimate the number of trials needed for there to be at 
least a 50-50 chance of the event happening at least once. An example of an 
important situation in real life is given in Moore and McCabe (1993, p. 297, 
example 4.16) involving AIDS testing.  Bar-Hillel and Neter (1993) relate the 
history of research on a fallacy often committed with disjunctions, including its 
relationship to the more famous conjunction fallacy researched by Tversky and 
Kahneman (1983).   
 One famous example in the history of misconceptions involving 
probabilities of disjunctive events is the paradox of the Chevalier de Méré from 
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the mid-17th century.  De Méré asked Blaise Pascal why it is advantageous 
to bet on the occurrence of at least one ace in four rolls of a die, but not to 
bet on the occurrence of at least one double-ace (“snake eyes”) in (4)(6) = 
24 rolls  of two dice.  The two respective probabilities are in fact 1 – (5/6)4 ≈ .518 
and 1 – (35/36)4 ≈ .491. 
 Kunoff and Pines (1986, p. 211) paraphrase the paradox as follows: 
 
In throwing two perfectly balanced dice, how many tosses are needed to have at 
least an even chance of getting a pair of sixes at least once? …  From 1 – (35/36)n 
≥ .5, de Méré found n ≥ 24.6 and concluded that n = 25 was needed. …  He also 
concluded that 24 tosses was the correct answer, based on the widely accepted 
gambler’s rule:  If the chances are one in N of success in a single trial of an 
experiment, and n is the number of trials need to have at least an even chance of 
success, then n/N is a constant. 
 
 Freedman et al. (1991, p. 231) state:  “Fermat saw that de Méré had used 
the addition rule for events that were not mutually exclusive. … pushing de 
Méré’s argument a little further, it shows the chance of getting an ace in 6 rolls of 
a die to be 6/6 or 100%.  Something had to be wrong.”  This example actually was 
very important, both at the time (the two probabilities involved are on opposite  
sides of the 50% mark, and so were of great interest to gamblers), and because it 
led to work by Pascal and Fermat that (Weaver 1963, p. 52) “can properly be 
regarded as the real start of the mathematical theory [of probability].”  
 As students can hypothesize with their calculators, when N is 
large  enough, the ratio n/N is indeed almost constant.  Originally shown by 
Abraham De Moivre, this result can be justified by setting 1 – (1 – 1/N)n equal 
to .5, which yields n ln(1 – 1/N) = – ln2.  Using power series to approximate 
ln (1 – 1/N) by – 1/N, the result follows.  In de Méré’s case, N = 6 was not large 
enough for n/N = 4/6 to sufficiently approximate the limiting constant of 
ln(2) ≈ .6931.  This value is a useful landmark, as discussed in the context of 
numerical intuition in section 2.3.3.  In fact, had Frances Bobnar known of this 
particular benchmark, she might not have sued the Pennsylvania Lottery 
Commission (see Cohen 1994) after her family and friends bought some 
$1.5 million in tickets without winning a jackpot. 
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 A more famous example involving disjunctive events (and perhaps the 
most famous problem mentioned in this study) is the “birthday problem”: 
estimating the number of people (23 is the answer) needed so that there is at least 
a 50% chance that at least two people have the same birthday.  Students often 
tend to use 50% as a representative multiplier (see Kahneman and Tversky 1972) 
in such a situation.  For example, in a pretest administered by Shaughnessy (1977, 
p. 306), “62 out of the 80 subjects responded that it would take 183 or more 
people.”  In that same experiment, Shaughnessy found that after 61/2 weeks of a 
small-group activity-based course, the students’ “tendency to use 50% as a 
representative multiplier of the total population had practically disappeared in the 
experimental group.” 
 As Slonim (1960, pp. 10–11, emphasis in original) explains: 
 
Experience, as well as mathematics, in this instance discloses the error in one’s 
intuitive feeling that the occurrence of multiple birthdays in a group of 30 people 
is rare. …  Picture the 30 people lined up in a row.  Number One states his 
birthday.  The remaining 29 then compare their birthdays with his.  If there are no 
matches, Number Two then announces his birthday.  The remaining 28 now have 
a second chance to compare their natal dates with that of Number Two.  If, again,  
none match up, one or more of the remaining 27 may still duplicate Number 
Three’s birthday.  So on down to Number Twenty-nine, whose birthday may still 
be the same as Number Thirty’s.  Each of the 30, therefore, has 29 separate 
chances of matching his birthday with another’s. …  [T]he average person sees 
the problem as ‘What are the odds that any one of the other 29 has the same 
birthday as mine?” whereas they more properly should ask, “What are the odds 
that any one of the 30 has the same birthday as any other one of the 30? ”   
 
 A correction must be made to Slonim’s statement that each of the 30 has 
29 separate chances of matching his birthday with another’s, as this would be 
double-counting many of the chances.  Now, applying the corrected scenario to 
the 23 people needed to answer the original birthday problem question results in 
22 + 21 + 20 + ... + 1  = 22(23)/2 = 252 separate chances.  It is no coincidence 
that 252/365 corresponds well to the n/N approximation discussed in connection 
with de Méré’s Paradox. 
 Assuming birthdays are uniformly distributed among 365 days (and 
Berresford 1980 shows that the birthday problem is robust to real-life deviations 
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from this assumption) and disregarding February 29 birthdays, the probability of 
at least one match among n people is given by the formula: 

1 – Pr(no matches) = 1 – [ (365/365)(364/365) ... ((366 – n) / 365) ] . 

 Students can easily do computer simulations of this situation.  They can 
also collect data from groups of 23 people (easily obtainable from classrooms) 
recording whether there was at least one match in about half of the groups of 23.  
As Falletta adds (1990, p. 123):  “In addition to getting twenty-four people 
together, you could check a reference work such as Who’s Who or an almanac for 
the birth dates of twenty-four randomly-selected individuals or groups of 
presidents, writers, inventors, and so on.” 
 Shaughnessy’s (1977) dissertation study included an experiment in which 
students “guessed the number of cards they would have to turn over to have at 
least a 50% chance of getting at least one ace from an ordinary well-shuffled deck 
of cards.”  Shaughnessy reports:  “The guesses made by the subjects [the guesses 
ranged mostly from 12 to 15] indicated that they were more aware of the 
deceptive nature of the probability of disjunctive events than they had been at the 
beginning of the course.  Only one student guessed that it would take 26 cards to 
have at least a 50% chance.”  While Shaughnessy reports that “the tendency to 
use 50% as a representative multiplier [as most students did in the classical 
birthday problem on a pretest] of the total population had practically disappeared 
in the experimental group … about 6.5 weeks into the experimental course,” we 
cannot conclude that student answers were due solely to the use of 
counterintuitive examples in instruction.   
 Because of its fame since being proposed in 1939 by Richard von Mises, 
the birthday problem usually appears in some form in most textbooks.  However, 
it is often presented more as a historical footnote or enrichment exercise, rather 
than as an example of a problem worth serious attention.  It is not clear whether 
this is due more to its counterintuitive result or due to the complexity of the 
calculation and application of both the complement and independence rules.  The 
examples of disjunctive events calculations are usually both simpler 
computationally but also far less relevant to a real life situation.  In any case, 
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rarely does a textbook follow up with an additional real-life though less-famous 
situation analogous to the birthday problem, although numerous examples exist. 
 One real-life illustration of probabilities of disjunctive events arose from a 
highly publicized course (e.g., Elliot 1993, Ringo 1993) on the Texas Lottery 
taught by the author at the University of Texas at Austin for University of Texas 
Informal Classes in the fall of 1993.  In the “Pick Six” Texas Lotto game, 6 balls 
are randomly drawn without replacement from a set of 50 balls numbered 1 to 50.  
Students noticed that it was not  uncommon for at least one number to be drawn 
that had also been drawn in the previous 6-ball drawing and asked its probability.  
Using 50-space spinners, students quickly simulated a large number of drawings 
and were surprised that this event seemed to occur as much as half the time.  The 
exact probability is actually greater than 1/2: 

1 – [ (44/50)(43/49)(42/48)(41/47)(40/46)(39/45) ] ≈ 5/9  

 
 
3.5  Classification Paradox 
 The Classification Paradox (so named in articles such as Reinhardt 1981) 
involves confusing a conditional probability P(A|B) with its inverse conditional 
P(B|A).  This is one interpretation for the confusion students often encounter in 
“the interpretation of what it means to reject the null hypothesis” (Shaughnessy 
1992, p. 474).  The Bayesian focus is on the probability of a hypothesis given 
particular data (the “inverse probability”), while the frequentist focus is on the 
direct probability of the data given a particular hypothesis (e.g., Gigerenzer and 
Murray, 1987, p. 8).      
 In any event, the counterintuitive fact is that, when testing for a condition 
(HIV, drug use, birth defect, etc.) that is rare in a particular population, even with 
a fairly accurate test, most positive results will be false positives.  After an 
exercise, Moore and McCabe (1993, p. 364) declare that the example “illustrates 
a fact that is important when considering proposals for widespread testing for 
AIDS or illegal drugs.”   In their exercise with real-life numbers,  P(+ test | HIV+) 
= .997,  P(– test | HIV–) = .985, and P(HIV+) = .01, yet  P(HIV+ | + test ) is only 
.40.   One reason students tend to overestimate P(HIV+ | + test ) is that they may 
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be committing the fallacy of (see Shaughnessy, 1992, p. 471) ignoring the base 
rate information that P(HIV+) = .01. The  probability  P(HIV+ | + test ) would be 
even less for less accurate tests or for populations in which the trait of interest is 
less common.  For a concrete illustration of this example, assume 100,000 tests 
are given.  On the average, 1000 will be HIV+ and 997 of these people will yield 
a positive test result.   Of the 99,000 who are HIV–, (.015)(99,000) = 1485 will 
test positive anyway.  Therefore, there are more false positives (1485) than true 
positives (997)!  The mathematical approach of the probability “chain rule” 
known as Bayes’ theorem— 
 

P(A | B) = P(A and B) / P(B) = P(A) P(B | A) / P(B) 
= P(A) P(B | A) / { P(A) P(B | A) + P(not A) P(B | not A) } 

where A = actually having the trait 
and B = test says “positive” for the trait 

 
—can be supported by a number of representations, such as a contingency table, a 
Venn diagram, a tree diagram (e.g., Moore and McCabe 1993, p. 350), or a 
reverse flow diagram (e.g., Chu and Chu, 1992).  These same techniques can 
certainly be applied just as well to conditional probability problems that do not 
lead to counterintuitive results (e.g., Moore and McCabe 1993, p. 378, exercise 
5.75), yet such problems are not as likely to capture students’ attention. 
 Just as Simpson’s Paradox has occurred in publicized real-life situations 
(as discussed in section 3.3), the Classification Paradox has also received its share 
of attention (e.g., vos Savant 1993, Paulos 1994, Pringle 1994).  Pringle (1994, 
p. 51) describes how a rape case was actually overturned after judges were 
convinced that the paradox had cast doubt on the verdict of the original trial: 
 
… forensic evidence answers the question “What is the probability that the 
defendant’s DNA profile matches that of the crime sample, assuming that the 
defendant is innocent?”  But the jury must try to answer the question “What is the 
probability that the defendant is innocent, assuming that the DNA profiles of the 
defendant and the crime sample match?” …  a very small answer to the first 
question does not necessarily imply a very small answer to the second. … it is 
wholly wrong to imply that the DNA match probability is the same as the 
probability of the defendant’s innocence.  “A DNA test showed that the 
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chances of the defendant not being the attacker were 859 million to one” is a 
typical newspaper error.  This type of statement has been dubbed “the 
prosecutor’s fallacy.” 
 
A final example is offered by Kernighan (1994):  “[I]f you correctly predicted two 
coin flips in a row—a 1-in-4 stroke of luck—would you conclude that your 
chances of possessing ESP were 3 in 4?” 
 
3.6  Required Sample Size  
 Freedman et al. (1991, p. 336) concisely state a counterintuitive result 
involving required sample size required for reasonable precision: “When 
estimating percentages, it is the absolute size of the sample which determines 
accuracy, not the size relative to the population.  This is true when the sample is 
only a small part of the population, which is the usual case.”  The authors then 
provide an example: 
 
There are about 1.2 million eligible voters in New Mexico, and about 12.5 million 
in the state of Texas.  Suppose one polling organization takes a simple random 
sample of 2,500 voters in New Mexico, in order to estimate the percentage of 
voters in that state who are Democratic.  Another polling organization takes a 
simple random sample of 2,500 voters from Texas, in order to estimate the 
percentage of Democratic voters there.  Both polls use exactly the same 
techniques. …  It does seem that the New Mexico poll should be more accurate 
than the Texas poll.   However, this is one of the places where intuition comes 
into head-on conflict with statistical theory, and it is intuition which has to give 
way.  In fact, the accuracy expected from the New Mexico poll is just about the 
same as the accuracy to be expected from the Texas poll. 
 
 Freedman et al. (1991, p. 337) explain this fact by first using a “box of 
tickets” model to show why population size is completely irrelevant if the 
sampling is done with replacement, and then why the multiplicative correction 
factor that must be used for sampling without replacement is nearly one (and thus 
can be ignored) when the sample is not a substantial fraction of the population.  
The fpc (“finite population correction” factor), is (N – n) / (N – 1), which is 
indeed nearly 1 when the sampling fraction n/N is small, where n and N are 
sample and population sizes, respectively.  As Cochran (1977, p. 25) states:  “In 
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practice, the fpc can be ignored whenever the sampling fraction does not 
exceed 5% and for many purposes even if it is as high as 10%.  The effect 
of ignoring the correction is to overestimate the standard error. …”  Cochran 
(1977, p. 52) derives this formula for estimating the variance of the sample 
proportion: [pq / (n – 1)][(N – n) / N], where p is the sample proportion and 
q = 1 – p.  If n/N is small, this formula  clearly depends on n, not n/N. 
 Perhaps a more dramatic illustration is offered by Paulos (p. 35, 1994):  
“Although it seems counterintuitive, a random sample of 500 people taken from 
the entire US population of 250 million is generally far more predictive than a 
random sample of 50 people out of a population of 2,500.”  The formula in the 
preceding paragraph will verify that in Paulos’ example, the sample of 500 people 
has an estimated variance that is about one-tenth as large as (and therefore 
considerably more predictive than) the sample of 50 people. 
 Freedman et al. (1991, p. 339) later offer this accessible analogy to defuse 
the dissonance of the overall situation:  “Suppose you took a drop of liquid from a 
bottle, for chemical analysis.  If the liquid is well mixed, the chemical 
composition of the drop [i.e., the sample] would reflect quite faithfully the 
composition of the whole bottle [i.e., the population], and it really wouldn’t 
matter if the bottle was a test tube or a gallon jug.”  This conceptual intuition can 
be reinforced with comparing binomial and hypergeometric distributions (which 
represent the “with replacement” and “without replacement” sampling schemes, 
respectively) as in Berenson and Levine (1989, p. 236). 
 Since the sample proportion can be considered as a sample mean of 0’s 
and 1’s, it should not be surprising that these results about the sample proportion 
can be generalized to the sample mean. Cochran derives the following formula for 
the estimated variance of the sample mean when sampling is done with replace-
ment:   (s2/n)(N – 1)/N, where s2 is the sample variance. Cochran derives the 
following formula for the estimated variance of the sample mean when sampling 
is done without replacement:  (s2/n) ( 1 – (n/N) ), which is equivalent to the “with 
replacement” formula times the fpc factor, (N – n) / (N – 1).  The confidence 
intervals in Cochran (1977, p. 27) are of the form x´ ± z(s)√[1 – (n/N)]/√n, which 
depends on n, not n/N, if n/N is negligible.  Slonim (1960, p. 74) offers a specific 
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data set to illustrate that “as the universe increases in size the sample size (needed 
to obtain a specific target of precision a with a certain level of confidence) 
remains remarkably constant.”  The coefficient of variation was apparently known 
for this data set, and precision is defined as the quantity after the ± sign divided 
by the mean.  While this is useful to demonstrate if time permits, the example 
with proportions has a simpler formula, and perhaps is more common to 
introductory students’ daily experience, given the ubiquitous presence of opinion 
polls in the media. 
 
3.7  Looking Ahead 
 This chapter has illustrated several key counterintuitive examples in 
statistics.  The next chapter presents two points of view on their use, followed by 
a model that incorporates these and several other examples to the framework of a 
syllabus for the introductory statistics course. 
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CHAPTER 4   

 
A PAIR OF PARADIGMS ON PARADOX 

 
 
4.1   The Traditional Position:  “Paradox Lost” 
 One perspective on the role of counterintuitive examples is expressed in 
the fifth of Gail Burrill’s (1990, p. 113) ten suggestions for teaching statistics and 
probability in the spirit of the Standards:    “The emphasis in teaching statistics 
should be on good examples and building intuition, not on probability paradoxes 
or using statistics to deceive.”   This study labels this perspective the Traditional 
Position for two reasons.  First, it appears to be used by most instructors, although 
there has not been a formal survey to confirm this.  Second, Burrill’s ten 
suggestions also appear in Guidelines for the Teaching of Statistics K–12 
Mathematics Curriculum, which was published by the American Statistical 
Association’s Center for Statistical Education in March 1991, and therefore carry 
the status of official sanction.  Because this position is the status quo and is well-
known, this study will give less attention to explaining the Traditional Position 
relative to the Alternative Position. 
 It is the spirit of Burrill’s statement that is the key.  Many of the items 
listed as counterintuitive in the model (SPICE) in section 4.7, for example, are in 
fact typically covered in a Traditional course (e.g., “correlation does not imply 
causation”) and are marked with an asterisk in the model.  The important 
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distinctions to be made are that Traditional teachers will consistently avoid many 
of the paradoxes in the model of section 4.7, and will not take full advantage of 
the learning opportunities possible (see section 4.3 for a discussion of these) with 
the counterintuitive items they do cover. 
 Some textbook authors seem to specifically invoke this Traditional 
Position in the context of the introductory course.  Even Moore and McCabe 
(1993), whose book certainly includes some counterintuitive examples, neverthe-
less advocate a somewhat streamlined approach (p. xv):  “Because judgment is 
developed by experience, an introductory course should present firm guidelines  
 
 
and not make unreasonable demands on the judgment of students … as is 
appropriate in a first course, most exercises are straightforward even at the cost of 
some oversimplification.”  
 Burrill’s thoughts are also echoed in Falk and Konold (1992, p. 161):  “It 
is tempting to bring some of the more devious problems to the classroom to 
demonstrate to students their erroneous tendencies and perhaps enlighten them.  
However, if a teacher persists in pointing out to students how prone they are to 
inferential errors, they may become so convinced of their incapacities that they 
despair of ever mastering more appropriate techniques.”  There does not seem to 
have been but there should be research to investigate whether in fact teachers that 
follow the Traditional Position do so because of their belief in this statement.  
Extending the weightlifting analogy introduced in section 1.1, a teacher from the 
Traditional Position would avoid virtually all weightlifting because some people 
have been injured by lifting too much or too often. 
 A teaching model that is consistent with or sympathetic to the Traditional 
Position might be the “bridging analogies” approach from science education (e.g., 
Duit 1991, Brown 1992, or Clement 1993), in which teachers use carefully chosen 
concrete anchoring examples from students’ experience to induce the student to 
make an analogical jump to the correct target intuition.  Indeed, some of the 
metaphors in section 2.3.1 or section 4.7 might well be candidates for such 
bridging analogies.  As Falk and Konold state (1992, p. 161):  “[I]t seems reason-
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able to begin instruction in probability by building on students’ sound intuitions.  
Valid probabilistic intuitions are not hard to come by.  Despite the abundance of 
studies describing people’s inferential biases and shortcomings, many of the rules 
prescribed by probability theory are compatible with common sense.” 
 This spirit of building on students’ sound intuitions needs to be further 
related to the ample research that has been done on heuristics. For example, 
Shaughnessy (1992, pp. 478–479) states: 
 
Although there are circumstances where reliance upon heuristics such as 
representativeness and availability can result in biased, nonnormative probability 
estimates, in some contexts these heuristics are very useful … Availability … is  
 
often a very useful organizer for decision-making. …  The very reason we try to 
draw a random sample from a population is so that it will be representative of the 
population. …  Representativeness is, therefore, fundamental to the epistemology 
of statistical events . … [I]t is not that there is something wrong with the way our 
students think, just that they—and we—can carry the usefulness of heuristics 
too far.” 
 Piagetian developmental theory also seems consistent with the Traditional 
Position in that it implies that probability concepts are developed in natural, 
gradual ways, without the need of confrontative intervention.  The three-stage 
model of Piaget and Inhelder (1975) involves stage transitions near ages 7 and 14. 
 
4.2   Limitations of the Traditional Position  
 To the extent that the Traditional Position is based on an exaggerated fear 
of intimidating students, it needs to be confronted.  The statement in section 4.1 
by Falk and Konold exaggerates the Alternative Position and can be addressed by 
the constructivist views in Roth (1990, p. 160): 
 
Instruction for meaningful learning cannot be a simple matter of pointing out to 
students the conflicts between their own ideas and scientists’ ideas.  Telling 
students their ideas are ‘wrong’ and explaining to them why other explanations 
are better will not engage students in the process of actively constructing 
meaning.  Researchers exploring conceptual change models of instruction 
emphasize the need to devise ways to engage students in actively thinking and 
puzzling about the phenomena they are studying. 
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 Duit (1991, p. 665) claims that “[a] main problem with the approach is 
that there may not be enough good anchoring situations and bridging analogies 
available” and also students may not be able to understand or apply the analogies 
as intended by the teacher.  Clement et al. (1989, p. 558) bring up another 
problem, namely when students “refuse to believe that the prediction [about the 
anchor situation] applies to the target situation.  Apparently, they cannot transfer 
the key relationship to the target.  In such a case we refer to the anchor as brittle.” 
 Also, appeals to developmental stages must be made carefully, as these 
have been found to be problematical by some researchers.  Scholz (1991, p. 246)  
details how information processing models reveal the inadequacy of aspects of 
cognitive-developmental models by Piaget and Inhelder.  Scholz quotes the 
results of M. Scardamalia (1977), who “showed that even concrete-operative 
children are ready to solve combinatorial problems provided that the task 
demands do not exceed their information processing space.”  In any event, many 
researchers (e.g., Hudak and Anderson 1990; Allen et al. 1987) have found that 
substantial numbers of college undergraduates had not achieved the level of 
formal operations that Piaget associates with age 14 and up.  Also, even 
misconceptions studies that suggest “a developmental scheme of stages” (Garfield 
and Ahlgren 1988, p. 51) nevertheless call for an active role on the part of the 
teacher to facilitate “the transition to the next stage.”  
 A final disturbing threat to the Traditional Position is a study by Greeno 
(1983), who found that intuition with respect to randomness actually decreased 
with age among students aged 11–16 years.  Finally, the position of Burrill 
(1994) is based mostly on “what happens in my classroom” rather than on 
formal research. 
 
4.3   The Alternative Position:  Counterintuitive Examples 
 Based on the reasons given in section 4.1 for labeling the avoidance of 
counterintuitive examples as the Traditional Position, the use of counterintuitive 
examples is considered the Alternative Position in this study.  Borasi makes a 
related point (1994, p. 170, emphasis in original) when he says:  “To fully 
appreciate the radical nature of approaching errors as springboards for inquiry in 
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mathematics instruction, it is also important to realize that such an approach is at 
odds with most teachers’ and students’ current views of errors and also differs 
considerably from the uses of errors made by most mathematics education 
researchers to date.” 
 Nevertheless, mathematics educators in general are finding many motiva-
tions for counterintuitive examples.  Hansen (1994, p. 202) states:  “Whenever we 
can surprise our students with counterintuitive results—Why did that happen?—
their increased interest level presents an exceptional learning opportunity.”  
Konold (1994, p. 233) adds:  “Finding a surprising result, students are more 
motivated than they otherwise would be to understand what is going on.  They  
eagerly express opinions in class discussions.”  The active discussions that much 
more naturally accompany a counterintuitive example (see section 5.2) very much  
support the increased emphasis on mathematical communication called for by the 
NCTM (1989, Curriculum Standard #2). 
 Gordon (1991, p. 511) lists many additional benefits of the Alternative 
Position: 
 
For not only do instances that run counter to intuition gain students’ attention 
because of the disequilibrium experience when what had been imagined to be true 
turns out not to be so, but such examples also help students challenge habits of 
thought and practices, thus leading to their becoming better thinkers (Marzano 
et al. 1988, p. 128).  By presenting students mathematical moments that challenge 
common sense and common practice, the teacher gives them the opportunity to 
gain a greater appreciation of the need for exploration, reflection and reasoning.  
  
 In statistics, this further translates to an opportunity to gain a greater 
appreciation of statistics as an empirical science, and in valuing this, be less likely 
to make decisions based on intuition alone (a further point on this is made in 
section 5.2).  For example, Kohn (1992, p. 218) presented a version of the Monty 
Hall problem (discussed in more detail in section 3.2), in which he put a $1 bill in 
one of three envelopes, had a volunteer pick an envelope, revealed one of the 
unchosen envelopes to be empty, and asked if the volunteer would have the best 
chance of getting the dollar if she stayed with her initial choice, switched to the 
other unopened envelope, or if it made no difference.   Most students initially did 
not have the correct view that switching is best.  After conducting an experiment 
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that tallied the subjects’ choices and consequences of the choices, and observing 
that switching resulted in a significantly greater proportion of wins, students 
completed a survey in which students “rated whether they would base their 
actions on intuition only (1) to research only (9).”   “Results of the Trust in 
Research Survey indicate [p < .1] that students who participated in the 
demonstration had higher trust in the empirical technique than students before the 
demonstration.” 
 Counterintuitive examples may also help students appreciate the 
relationships and differences between empirical investigation and deductive  
mathematical logic.  According to the NCTM (1989, p. 187):  “It is essential that 
students come to understand the difference between the right-or-wrong quality 
characteristic of most mathematical thinking and the qualified nature of outcomes 
in statistical analysis.  It is equally important, however, that students do not 
extrapolate beyond this fact to reject statistical thinking because it allows 
counterexamples.  Instead, they should recognize that statistics plays an important 
intermediate role between the exactness of other mathematical studies and the 
equivocal nature of a world dependent largely on individual opinion.” 
 Romano and Siegel (1986, p. vii) make a related point: 
 
Counterexamples can also provide insight into a problem—for example, by 
showing which hypothesis needs to be strengthened in order to achieve a true 
result, by helping to establish a result as ‘best possible’ or by clarifying the need 
for a particular choice of definition.  A less technical but perhaps more important 
theme is that in statistics we really have no set principles that work in 
all  situations. 

A well-chosen trip through the temporary “fog” of paradox can lead to 
deeper, lasting insight, as Rapoport (1967, p. 52) relates: 
 
... [A]n advance in generalization can exorcise a paradox by restoring a familiar 
law that may have been lost in a preceding generalization. … It was found, 
paradoxically, that in some number domains, algebraic integers could be factored 
into prime numbers in more than one way. …  Further study showed, however, 
that algebraic integers could be generalized into objects called “ideals,” and it 
turned out that these can be factored into primes in only one way. 
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As section 3.3 demonstrated, the pedagogical device of geometric representations 
restored and strengthened confidence that might have been  temporarily jarred by 
Simpson’s Paradox. 
 Counterintuitive examples share many similarities to what Borasi (1994, 
p. 168) refers to as anomalies, and thus may share some of their benefits (listed at 
the end of section 4.3) and theoretical framework: 
 
First of all, important contributions were provided by Dewey’s and Peirce’s view 
of knowledge as “a process of inquiry motivated by doubt” (Dewey, 1933; Siegel 
& Carey, 1989; Skagestaad, 1981).  Within this view, anomalies  (i.e., ‘things that 
do not make sense or perceptual judgments or observations that seem unexpected’ 
[Siegel & Carey, 1989, pp. 23–24]) play a key role because they are considered 
likely to create the kind of doubt that can set the inquiry process in motion. …  
Anomalies also play a key role in Kuhn’s thesis that scientific knowledge is 
achieved through an alternation of “normal science” and “scientific revolutions.”  
Kuhn (1970) observes that in the history of science some unacceptable results or 
unsolvable problems have occasionally challenged the very paradigm within 
which a certain area of science was developing, thus motivating a search for an 
alternative paradigm that revolutionized research in that area. 
 
 Thus, a student who experiences counterintuitive examples gains 
appreciation for the typical and historical process by which statistics and 
mathematics grows.  (Certainly a counterintuitive or unsatisfying result from 
frequentist inference has led more than one statistician to embrace the Bayesian 
paradigm.)  Kunoff and Pines (1986, p. 210) state that, more than for most areas 
of elementary mathematics,  “[i]t is possible to present problems that puzzled the 
experts of the time in which they originated but which can readily be solved by 
students once some elementary probability concepts are developed.”  Indeed, 
students’ motivation is often connected to this very fact (ibid., p. 214):  “Many 
students are anxious to try Fra Paccioli’s problem [the problem of “points,” which 
at about 500 years old, is one of the oldest probability problems to draw the 
attention of mathematicians] when they learn that it was not solved by either 
Cardano or Tarataglia, both being important mathematicians of the sixteenth 
century who worked on it extensively.” 
 To the extent that a counterintuitive example might be readily be exploited 
by advertisers or activists, a teacher can provide a strong sense of empowerment 
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to students by allowing them to actively confront and demystify the example.  In 
the words of Huff (1954, p. 9):  “The crooks already know these tricks; honest 
men must learn them in self-defense.”  This is also one of the suggestions of 
Garfield and Ahlgren (1988, p. 48).  If it is worth warning students about, for 
example, “abuse of statistical tests” (Moore and McCabe, 1993, pp. 475–477), 
then surely it is also worth warning students about, say, the abuse of contingency 
tables when Simpson’s Paradox is neglected. 
 A problem that is not obvious, that takes a while to unravel and 
understand, is very much in the spirit of the NCTM’s recommendation (1989, 
p. 6) that students become mathematical problem solvers:   “… students need to 
work on problems that may take hours, days, and even weeks to solve.  Although 
some may be relatively simple exercises to be accomplished independently, others 
should involve small groups or an entire class working cooperatively.  Some 
problems also should be open-ended with no right answer, and others need to be 
formulated.”  While it may not be completely accurate to describe a particular 
counterintuitive example as “having no right answer,” it certainly tends to have 
multiple representations (e.g., Simpson’s Paradox in section 3.3, the Inspection 
Paradox in section 4.7) and multiple pathways towards resolution.  Fischbein’s 
“origins” paradigm of intuition (discussed in section 2.2) is nicely compatible 
with this position in that there is a sense of a “before” and “after” created by 
something powerful and immediate in between.  Also, the extent to which 
structured controversies (discussed in section 5.2) have been found superior to 
concurrence seeking certainly supports the Alternative Position over the 
Traditional Position. 
 Also, the conflict between intuitive and formal approaches mentioned in 
section 1.1 may be alleviated with the Alternative Position.  While invoking the 
“cognitive sense” of intuition, a counterintuitive example may also activate 
deductive cognitive processes by forcing a learner to go through the comparing, 
contrasting, sorting, separating, exploring and testing that a counterintuitive 
example induces.  Steen and Seebach (1978, p. iii) certainly found this true in 
topology:  “Not only are examples more concrete than theorems—and thus more 
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accessible—but they cut across individual theories and make it both appropriate 
and necessary for the student to explore. …” 
 Metacognition is yet another benefit of the Alternative Position, as 
described by Falk and Konold (1992, p. 157): 
 
Probability is especially rich in counterintuitive examples, which often entail 
fallacies and paradoxical conclusions.  Some of these examples played an 
important role in the development of probability theory.  Students may likewise 
benefit from comparing their intuitions concerning puzzles and paradoxes with 
normative solutions.  This activity requires increased awareness of one’s own 
thought processes. …  Metacognition is no less important than learning the right 
solution, and reflective thinking is a vital step toward achieving abstract 
mathematical  ability. 

The Alternative Position is more consistent than the Traditional Position 
with  the “conflict-discussion” lessons that have been successfully implemented 
by Bell (1986, p. 28): 
 
Many people feel that class discussion in mathematics is difficult.  This may be 
partly because we try to make it too convergent, aiming at appreciation not only 
of a single correct result but also the single correct line of reasoning towards it.  
But, as can be seen from any discussion based on a strongly felt conflict, many 
factors and many connections contribute to pupil’s convictions.  These all need to 
be brought out and aired.  Discussions may have an element of repetition; normal 
discussions on any subject do, because it takes more than one cogent argument to 
shift an established view.  Perhaps the most striking observation from all this 
work is that back-sliding is the norm.  Even after clearly effective lessons with 
learning visibly taking place, in the next lesson, most of the class could slip again 
into the original error.  True, the second recovery was quicker than the first.   The 
method of conflict-discussion promises to provide a more effective way of dealing 
with this widely recognized phenomenon than simply reteaching. 
 
Although Bell’s original context concerned neither college students nor statistics, 
his use of group discussion and multiple paths to the answers are certainly 
qualities for which the NCTM (1989) has called for greater emphasis. 
 Another use for counterintuitive experiences has been found by Osberg 
(1993, pp. 110–111), who attempted  to help “introductory psychology students 
overcome the misconception that psychology is just common sense.  Early in the 
course, I recount Festinger and Carlsmith’s (1959) classic cognitive dissonance 
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experiment and ask students to guess the outcome of the study.”  After the class is 
given feedback about their collective responses (which are almost unanimously 
intuitive but wrong!), the class is told the counterintuitive result of the actual 
experiment. 
 
Evaluative data from the most recent time I used this demonstration suggest it 
achieved its aim and that students were very engaged by it … .  Students’ open-
ended comments included:  … “It helped me to understand that I must study in 
order to do well in this course because it is not just common sense but can involve 
surprising results.” “You could have just told us psychology does not mirror 
common sense and I probably would have forgotten it.  I won’t forget it now.” 
 
 In a related example, Carkenord and Bullington (1993) tried to convey an 
appreciation for the phenomenon of cognitive dissonance by having students 
complete a survey which was explicitly designed to induce cognitive dissonance 
in the students themselves.  After debriefing the students with discussion, they 
surveyed the students and found that students considered the activity highly 
effective in understanding cognitive dissonance.   Such an assessment of student 
evaluations would be valuable in the specific context of statistics courses.  Also, 
affective studies should be undertaken to assess student feelings of satisfaction 
and empowerment after understanding a counterintuitive example. 
 A summary of the learning opportunities that are offered by activities 
involving counterintuitive examples would include all of those listed by Borasi 
(1994, pp. 185–186): 
 
experience constructive doubt and conflict regarding mathematical issues, engage 
in challenging mathematical problem solving, pursue mathematical explorations, 
reflect on the nature of mathematics, experience the need for monitoring and 
justifying their mathematical work, experience initiative and ownership in their 
learning of mathematics, recognize the more humanistic aspects of mathematics, 
verbalize their mathematical ideas and communicate them. 
 
Indeed, the relationship between how students deal with counterintuitive results 
and how they deal with their errors should be further explored. 
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4.4  Limitations of the Alternative Position 
 Further research is needed to better understand and reconcile the positions 
of these authors, especially in light of recent studies by Konold et al. (1993, 
p. 412), who report that “[t]he results of the present study suggest one limitation 
to the cognitive-conflict approach—a situation designed to contrast normative 
with informal reasoning may produce no conflict. … Incompatibilities and 
contradictions at this level will probably not be noticed by students unless they 
are reasoning from a single, coherent framework.” 
 Also, as discussed in section 3.1, what is counterintuitive is relative to the 
accumulated knowledge and experiences of a group of people.  Thus, if a standard 
set of counterintuitive examples published for use in the classroom becomes 
widely circulated, it could eventually lose some of its effectiveness, as students 
become aware of the “right answers” without fully grappling with the under-
lying issues. 
 The deeper kind of understanding that exploring a counterintuitive 
example can yield is rarely associated with an introductory college course.  
Beginning with Gelbaum and Olmsted (1964), books of counterexamples have 
been published in many areas of mathematics (including probability, graph 
theory, real and complex analysis, and topological vector spaces) and most are 
intended to serve as a reference or supplement (not as a text) for senior 
mathematics majors, graduate students, and professors.  In his critique of the book 
of probability counterexamples by Stoyanov (1987), Durrett (1989, p. 405) states:  
“I personally find it undesirable to dwell exclusively on what can go wrong 
without talking about how things are proved.”  This call for a context and balance 
is echoed by Burrill (1994):  “… students need to see probability paradoxes.  The 
critical thing is not to screen them but to make sure they have the right tools to 
analyze the paradoxes in a meaningful way.  Most of the time they are presented 
as magic with very little foundation for kids to work from.” 
 
 
4.5  Moving Towards Synthesis:  Lesser of Two Evils 
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 Garfield and Ahlgren (1988, p. 48) reveal a tension by recommending that 
teachers “recognize and confront common errors in students’ probabilistic 
thinking” and yet also “create situations requiring probabilistic reasoning that 
correspond to the students’ views of the world.”  It is, however, encouraging that  
the use of bridging analogies and anchors consistent with the Traditional Position 
and the use of conceptual change teaching strategies consistent with the the 
Alternative Position have been combined by some researchers in science 
education such as Brown (1992, 1993).  
 It is not clear a priori that it is any less contrived to provide “nice” data 
sets (e.g., Read and Riley 1983) or data sets which have surprising aspects.   
Shaughnessy quotes (1992, p. 479) Clifford Konold as noting that “psychologists 
actually have to search for situations that will lead people astray,” but does not 
offer justification or specific reference.  Furthermore, something that would 
consistently lead one astray may, by its very nature, be difficult to detect without 
a careful search.  
 It is also not clear a priori whether Burrill and Gordon would be so far 
apart in practice.  After all, Burrill’s guideline in section 4.1 stated what the 
“emphasis” should be on, not necessarily that counterintuitive situations should 
be ruled out completely.  And yet, Burrill’s phrase “building intuition”  suggests 
that only “nice” situations can build intuition.   On the other hand,  it is unlikely 
that Gordon intended to suggest presenting nothing but counterintuitive examples. 
 There seems to be no hard evidence that a course that completely avoids 
counterintuitive examples would be most effective in achieving certain affective 
and cognitive goals.  On the other hand, while there is some support for the use of 
well-placed selected counterintuitive examples, there seems to be no hard 
evidence that they should be used all or even most of the time.  If one accepts 
Mevarech’s premise (1983, p. 423) that “[t]wo of the main characteristics that 
distinguish deep understanding and rote learning are the ability to deal with 
familiar and unfamiliar situations and the capacity of thinking in concrete and 
abstract manner (Klausmeier, 1980),” it seems to be a very reasonable extension 
to add the phrase “(and deal with) intuitive and counterintuitive examples.” 
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 The spirit of moderation and synthesis in statistics education is not limited 
to counterintuitive examples.  For example, introductory classes traditionally may 
mention Bayes’ theorem, but do not allow for discussion of the Bayesian 
paradigm of inference in general, even though it is often closer to students’ 
intuition than the frequentist interpretations.  Nevertheless, Albert (1994, p. 4) 
states he is  “not planning a Bayesian revolution.  Generally, statisticians use 
methods that are developed from a frequentist viewpoint and we should continue 
to teach methods that are used in practice.”  Albert (p. 5) simply suggests “[w]hen 
appropriate, give and encourage Bayesian interpretations to frequentist inferential  
 
procedures.”  It is this same “when appropriate” spirit that guides the building of 
the model of this study. 
 Further support to this spirit is provided by Falk and Konold (p. 161, 
1992): 
 
In probability, as in physics, “not all preconceptions are misconceptions.”  That 
expression is borrowed from the title of a paper by Clement, Brown, and 
Zietsman.  They propose that in teaching physics it is desirable to ground new 
material in students’ intuitions that are in agreement with accepted theory.  
Likewise, in teaching probability, one expedient strategy is to offer nontrivial 
probability problems for which students can guess whether the answer is greater 
or smaller than a given number.   This would allow the student to experience the 
satisfaction of having the prediction borne out by the results of the probabilistic 
calculation.  They may realize that commonsense can still be a good guide though 
it should be exercised with caution. 
 
 This is related to certain heuristics, as discussed in section 4.1, and is also 
supported by Moses (1986, p. 7): 
 
Most of the statistical methods encountered in a first course have the nice 
property of making sense, at least after due consideration.  It is fair to say that 
statistics is largely an extension of common sense.  You should expect the 
statistical procedures in this book to seem reasonable and not to conflict with your 
intuition (at least after some reflection).  If you do  find that your eyeball appraisal 
of a body of data differs sharply from the result you obtain by applying some 
formula, that is a warning flag. …  If careful restudy confirms the original 
analysis, then your intuition will have received a useful corrective.  But only 
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rarely should your thoughtful judgment and statistics say quite different things 
about a set of data. 
 
 Unfortunately, there may be a double-bind situation here for the 
Traditional Position in that the above quotation requires “reflection” and “due 
consideration” for most methods to make sense, an entire process that may be 
difficult to elicit from students if the instructor is overly concerned with not 
challenging students too much. 
 
4.6   Issues Considered in Building the Model  
 The model of synthesis proposed in section 4.7 attempts to address the 
issues raised in this chapter.  The model reflects Albert’s “when appropriate” 
spirit of balance by insisting on criteria for counterintuitive examples (e.g., 
section 3.2) and by suggesting guidelines for their use in the classroom.  For 
example, the model suggests structured controversies to explicitly address 
Konold’s concern that contradictions could go unnoticed (mentioned in 
section 4.4). 
 The concern of overuse of the same counterintuitive examples can be 
addressed in many ways.  First, new examples are constantly being created 
(indeed, the syllabus portion of the model has more than one example for most 
topics). Also, more than one context is possible for most counterintuitive 
examples (see chapter 3) and students are often slow to recognize an old concept 
in an updated context.  Second, examples need not always be telegraphed as 
counterintuitive.  Third, and perhaps most important, is that students can and 
should be taught in a manner in which the process and reasoning is a primary 
focus, not merely the correct answer.  Some students may have already heard the 
“punchline” before taking a statistics class, but probably do not already have a 
deep understanding of the structure and context and why their primary intuition 
is wrong.  
 In section 4.3, the relationship between instructional goals and appro-
piateness of counterintuitive examples was discussed at length.  During the model 
building process, the following issues were also considered: 
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Should the quantity or frequency of counterintuitive examples relative to 
intuitive examples be HIGH, MEDIUM or LOW?   
 There is certainly precedent (e.g., Tennyson 1990) for linking cognitive 
learning theory with instructional prescriptions.  However, Tennyson’s idea of 
assigning a percentage of time for different instructional prescriptions may not 
transfer to statistics in that it may be impossible to discuss a counterintuitive 
example thoroughly without referencing “intuitive” ideas as well, thus rendering 
the allocation distinction meaningless.  Another position explored was that the 
model should reflect the proportion of counterintuitive occurrence in real life, but 
this could be highly dependent on the area of application (and introductory 
statistics courses are often tailored for majors in a particular subject, such as  
business, psychology, etc.).  A more defensible perspective is that it should 
depend on the goal of instruction.  If the goal is merely computation and basic 
skills, then the level should clearly be LOW, while if the goals emphasize 
metacognition and critical thinking, then the level should be HIGH.  In the 
syllabus-driven model in section 4.7, there could usually be one or more major 
counterintuitive examples discussed or experienced in class per curriculum topic, 
some of which (e.g., Simpson’s Paradox) should be considered more “core” 
than others.   
 
When counterintuitive examples are used, should they PRECEDE or 
FOLLOW any intuitive examples from the same topic?   
 The syllabus-driven model makes clear that counterintuitive examples are 
best used to expand and explore concepts after they have already been introduced 
in a more intuitive, student-centered way, in a similar manner to the reference by 
Falk and Konold at the end of section 4.5.  Because of their ability to motivate, 
however, such examples may also occasionally be used to introduce new topics as 
well (e.g., Gordon 1991).  Gonick and Smith (1993) use de Méré’s Paradox as a 
vehicle to introduce basic probability definitions and rules. 
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Should counterintuitive examples be telegraphed (either pre-announced or 
setup with a sequence of leading questions) when used, or simply presented 
with an open-ended question for students to explore?   
 While many books attempt no such distinction, others put special 
markings by problems that are “particularly thought-provoking or have no ‘exact’ 
answer” (Berenson and Levine 1989, pp. vii–viii).  There is not only a lack of 
consistency here between textbooks, but even within textbooks.  For example, 
Moore and McCabe (1993, pp. 195–197) give exercises (e.g., 2.77, 2.81) that are 
telegraphed as well as not (2.80).  This variable, while there does not seem to be 
research on it, is probably not a crucial one in that students will quickly get the 
point that a specific example is counterintuitive before too long into an activity, 
and will certainly be less surprised to encounter another one later in the same 
semester.   
Because real-life data sets do not come tagged with an announcement of 
counterintuitiveness, students should not have counterintuitive examples pre-
announced as such, if a goal of instruction is to prepare students for real-life 
experiences (a goal advocated by the NCTM (1989), as mentioned in section 3.2). 
 
How counterintuitive should the examples be? 
 This is problematic to measure, as discussed in section 2.4.2.  Fischbein 
(1987, p. 78) states that “there is no systematic experimental data available 
concerning the intuitiveness of various logical rules.  It seems that researchers 
have not been concerned so far with this question.”  Piaget (1985, p. 150) refers to 
“optimizing equilibration” as “a process that leads to better equilibrium rather 
than simply returning to more stable forms of a former equilibrium.  It unites 
constructions and compensations in an indissociable way.”  However, Piaget 
gives no guidance as to how to achieve this or measure this in the real-life setting 
of a classroom environment.   
 Festinger (1957, p. 55) talks of looking “for some overall measure that 
will reflect the total magnitude of dissonance which exists.  In the experiment 
which we conducted … the actual measure employed was the subject’s rating of 
how confident he was that his decision was the correct one.  This measure was 
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used on the assumption that the greater the dissonance … the lower would be the 
confidence expressed by the subject.”  Festinger’s model of the relation (p. 130) 
between magnitude of dissonance and active seeking of new information suggests 
that there is indeed an optimal amount of dissonance (which interacts with 
whether or not new information is expected to increase dissonance) if the goal is 
to encourage students to seek new information.   This seems related to staying 
within what L. S. Vygotsky referred to as a student’s zone of proximal 
development.  It seems clear that dissonance must be defined relative to what each 
individual student already knows or believes to be true, and so (even assuming 
you can always accurately measure what students know and believe in the first 
place) there can be no one-size-fits-all measure developed or applied. 
  

If a goal is to create dissonance (under the assumption that this will 
ultimately lead to a lesson with greater impact), then group activities in which 
members are forced to commit to answers before and after the activity seem to be 
most effective.  This was found in psychology research in general (e.g., Lewin 
1952), and has been utilized in experiments in statistics education as well (e.g., 
Shaughnessy 1977).  In practice, it will come down to each individual instructor’s 
assessment of her students, goals and time available as to which counterintuitive 
examples should be included.   
 
How should individual student differences be taken into account? 
 As mentioned in section 2.4, a group anchor may not also be an individual 
anchor for every individual.  Wicklund and Brehm (1976, pp. 225–228) discuss 
the influence of factors due to individual differences such as self-esteem and 
introversion-extraversion.  For example, Wicklund and Brehm’s (p. 225) finding 
that “… in experiments by Glass (1964) and Gerard, Blevans and Malcolm (1964) 
… self-esteem was manipulated experimentally, and both of them found that 
dissonance was greater among high self esteem individuals” is certainly 
consistent with the findings of Dweck and Leggett (1988), who might suggest, for 
example, that a student whose goal orientation is learning would thrive on the 
challenge of a counterintuitive example, while a student with a performance 
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orientation might feel discouraged.  Ultimately, however, the focus and form of 
the model emerged in such a way as not to emphasize individual differences. 
 
4.7   SPICE:   Structured Progression Involving Counterintuitive Examples 
 While some introductory statistics books such as Moore and McCabe 
(1993) are organized at least as much by conceptual theme as by tool, others 
follow a more traditional sequence.  For example, Moore and McCabe (1993) 
introduce regression and time series before introducing probability models and 
estimation.  The topics in the Structured Progression Involving Counterintuitive 
Examples (hereafter abbreviated as SPICE), are in the sequence that many 
introductory courses typically use, although some topics might be omitted or  
covered in less depth due to time constraints.  Indeed, it would be extremely 
challenging for a one-semester course to cover the entire SPICE, and a current 
trend in education reform is to cover fewer topics, but in greater depth. 
 The general features of this model are that intuitive metaphors and 
activities are used to develop an initial conceptual framework for a topic.  The 
counterintuitive examples are then used for expanding and refining the 
framework, encouraging higher-order thinking skills and appreciation of statistics 
as a field of real-life inquiry, as discussed in section 4.3. 
 Some topics feature a closer connection between their counterintuitive and 
intuitive examples than other topics do.  This is because some of the 
counterintuitive examples involve a specific counterintuitive result that is 
counterintuitive in at least a qualitative sense (e.g., Simpson’s Paradox, Central 
Limit Theorem), while other examples simply involve a tendency to consistently 
overestimate or underestimate a quantity in an otherwise straightforward situation 
(e.g., combinatorial growth, runs in a random process).   
 The level of complexity of the counterintuitive examples increases fairly 
naturally in a parallel to that of the corresponding topic.  If one accepts Brewer’s 
premise (1985, p. 253)  that “statistical inference [as opposed to descriptive 
statistics] is subject to more misinterpretation because of its probabilistic 
character,” then it is precisely the latter (and more difficult) part of the syllabus 
that has the greatest need for a device such as a counterintuitive example to 
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expose the misinterpretations.  Indeed, the counterintuitive examples for the 
descriptive topics at the beginning of the syllabus often seem scarce or somewhat 
marginal in fundamental significance. 
 What follows is a brief listing of the SPICE, followed by a more in-depth 
prose discussion of each topic in the table.  For each topic, the in-depth SPICE 
discussion begins with suggested intuitive activities before describing 
counterintuitive activities.  The brief version of the SPICE, however, lists only the 
counterintuitive examples for several reasons:  (1) it is the part that is more likely 
to be the “new” or “unusual” feature for an instructor; (2) it is the part more 
readily listed in a way that is both concise and clear; (3) the “intuitive” 
example(s)  
for each topic are often of a similar form (i.e., students try to generate their own 
list first); (4) the counterintuitive examples often need more careful structure and 
scaffolding in their presentation. 
 The examples also vary considerably in how likely they are to be included 
in a Traditional course.  Currently, the few examples that typically would be 
included in any significant depth are marked with an asterisk (*).  Ironically, 
some of the starred examples may be actually be more counterintuitive to students 
than several of the nonstarred examples.  This syllabus is not meant to be 
exhaustive in every detail, but merely to provide at least one example per major 
topic.  For example, there is perfect correspondence between this study’s syllabus 
and the typical syllabus listed in Garfield and Ahlgren (1988, p. 46), who present 
topics in three categories—descriptive statistics, probability theory, and 
inferential statistics—but later critique (p. 57) such an organization. 
 It should be also stressed that, while the model features a syllabus of 
examples and topics, the underlying motivations and context of the model as 
discussed throughout section 4 should be considered part of the model as well.  
As in the Chance Plus curriculum (see Konold 1991), the fundamental curriculum 
unit can be thought of as a lab involving an introduction to a new topic with 
questions and structured activities for individual and group work.  The exact 
number of students per group, time allotted, and resources used, of course, must 
remain at the discretion of the instructor.  There are also certainly variations 
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possible on the ordering of topics, as discussed by Field (1984) and implemented 
by Moore and McCabe (1993). 
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Structured Progression Involving 
Counterintuitive Examples (SPICE)—brief version 

TOPIC                                 COUNTERINTUITIVE 
EXAMPLE                      
Types of Numerical Data   Type can depend on context 
Tabular/Graphical Displays   Histograms with unequal class intervals; 
  Histograms vs. bar graphs;  
  bar graphs vs. pictograms 
Measures of   Averaging-the-averages misconception; 
      Central Tendency  average class size; Simpson’s Paradox 
Measures of Variability  None known at present; see detailed model 
Independent Events  Disjoint � independent* 
Randomness  Longest run; number of runs & lead changes 
Combinatorics  Factorial growth rates 
Probability  Birthday problem*; deMéré’s Paradox 
Conditional Probability  Classification Paradox 
Independent Random Variables  Dependence  � correlation            
Distributions, Limit Theorems Central Limit Theorem,* Law of 
      Large Numbers 
Estimation    Usefulness & having important properties 
                                                             need not imply each other 
Regression    Regression fallacy 
Correlation                                  Correlation � causation* 
     Zero correlation � no relationship* 
Hypothesis Testing   Classification Paradox 
     Statistical significance � practical sig. 
     Practical significance � statistical sig. 
Experimental Design/ANOVA Interaction effects; see detailed model 
Sampling    For small n/N, precision depends on n,  
 not n/N; Inspection Paradox 
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Structured Progression Involving Counterintuitive 
Examples (SPICE)--detailed version 
  
Types of Numerical Data 
 Students can be asked for examples of numerical data until they have 
given possible examples of nominal, ordinal, interval, and ratio data.  They can 
then be asked to generate a list of ways how they are different and how they are 
similar and what can be inferred from them (e.g., it will be “intuitive” that there is 
no meaningful average of football jersey numbers, or that 80 degrees is not “twice 
as hot” as 40 degrees).   
 Students will have an excellent opportunity for critical thinking if they 
then consider the “numbered raffle tickets” and “number of cylinders in a car’s 
engine” examples of Velleman and Wilkinson (1993, p. 69), which demonstrate 
that  “[s]cale type … is not an attribute of the data, but rather depends upon the 
questions we intend to ask of the data and upon any additional information we 
may have.”   
  
Tabular/Graphical Displays of Data 
 Students can first be given a set of quantitative data and asked to find 
several tabular and graphical ways to summarize it.  The graphical methods they 
generate (with some guidance as needed) should correspond to some subset of the 
following:  histogram, dotplot, frequency polygon, frequency curve, ogive, box-
and-whisker plot.  Students can also discuss the usefulness of such tabular 
methods as:  frequency distribution, cumulative frequency distribution, relative 
frequency distribution, cumulative relative frequency distribution, and stem-and-
leaf display.  Finally, students can be asked what graphical and tabular methods 
are appropriate for qualitative data (bar chart and pie chart; frequency distribution 
and relative frequency distribution) and why others are not. 
 Because of factors such as similarity in appearance, students often confuse 
bar graphs and histograms.  A histogram needs no vertical scale because it is the  
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area, not the height, of a block that corresponds to the number of observations in 
the class interval (which need not have the same range as all other class intervals) 
covered by the bottom edge of that block.  It is not uncommon for the rightmost 
class interval to be larger than others when the data is sparsely distributed beyond 
a certain value.  Therefore, there can actually be more people in the rightmost 
income class interval than in the leftmost income class interval, even if the 
rightmost block is not as tall as the leftmost block (e.g., Freedman et al. 1991, 
p. 31, figure 2).  As for bar graphs, this is an appropriate place in the course to 
have students dissect certain graphs that are deliberately misleading, as in Huff 
(1954) or Reichmann (1961).  One example is bar graph data that are depicted in 
a pictogram such that only the icons’ heights (as opposed to the heights and the 
areas) are proportional to the numbers they represent.  Another example is 
quantitative data plotted in a line graph in which zero has been omitted (without 
acknowledging this omission with a broken or jagged line) from the vertical axis.  
In section 5.2, there is discussion about a group activity used by Shatz (1985) to 
illustrate concepts such as how the size of a class interval can affect the 
appearance of a frequency distribution.  Berenson, Friel and Bright (1993) have 
documented the tendency of elementary teachers to fixate on one graphical feature 
at a time (e.g., range, horizontal scale, modes, most frequent frequency, 
concentration of data points, absence of data point, number of columns) to 
interpret statistical data, so an activity such as a counterintuitive example that 
promotes critical thinking may help disrupt this fixation. 
 
Measures of Central Tendency  
 Students can often themselves come up with most of these measures (the 
first three of which receive the most attention in a typical  introductory course) of 
center or location:  mean, median, mode, midrange ( [Xmin + Xmax]/2 ), midhinge 
( [Q1 + Q3]/2 ), trimmed mean.   Students can then discuss them (as in the sample 

group activity in the appendix of Garfield 1993), discovering relationships such as 
a unimodal right-skewed distribution would tend to have these relative positions:   
mode < median < midhinge < mean < midrange.  In section 5.2, there is 
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discussion about a group activity used by Shatz (1985) to illustrate concepts such 
as how the skewed data can affect measures of central tendency.   
 Counterintuitive examples for this topic include the “average class size” 
example discussed in section 3.3.  This example is related to the Inspection 
Paradox which is discussed in the topic of sampling.  Also, students can be 
exposed to situations involving weighted averages and eventually confront the 
fact that the average of a set of averages need not be (but can be under certain 
conditions) the same as the average of all the original individual numbers.  Since 
categorical data has already been introduced, Simpson’s Paradox (also thoroughly 
discussed in section 3.3) can be discussed as well.  Following Bruner’s 
recommended progression from concrete to iconic to abstract, students could be 
exposed to the representation in figure 3, then figure 2, then figure 1.  While most 
of the focus of this topic has been on means (arguably the most important 
measure of center), it should be pointed out that there are also examples involving 
modes or medians (e.g., Romano and Siegel 1986, pp. 55–58). 
 
Measures of Spread, Variability or Dispersion 
 With a structured sequence of questions, students can be led to “discover” 
and appreciate most of these measures:   range, interquartile range, mean absolute 
deviation (from the mean), mean squared deviation, variance, standard deviation 
(an “average” deviation from the mean in the original units of measurement), 
coefficient of variation.   Intuitive connections can then be made between the 
standard deviation and the normal distribution in several ways.  First,  after 
collecting data that should be expected to be reasonably symmetric and unimodal, 
students can empirically discover the so-called empirical rule, that about 2/3 of 
the data will be within one standard deviation of the mean, etc.  Also, students can 
visually see that for a normal distribution, one standard deviation away from the 
mean is exactly where the direction of curvature changes from convex to concave 
(this description is a viable alternative to using the term “inflection point” since it 
is not assumed that students in introductory statistics have had calculus). 
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There does not seem to have been any counterintuitive examples yet 
reported for the topic of variability at the level of mere descriptive statistics.  
There are, however, a number of possible examples for the general phenomenon 
of variability, once randomness and independence have been discussed.  For 
example Hogarth (1987, p. 18) describes how “[t]he amount of variability is 
positively related to the degree of randomness exhibited by the phenomenon” and 
illustrates it (p. 19) with the following problem of Kahneman and Tversky:  
“Boys are a majority (65%) in program A, and a minority (45%) in program B.  
There is an equal number of classes in each of the two programs.  You enter a 
class at random, and observe that 55% of the students are boys.  What is your best 
guess—does the class belong to program A or to program B?”  Also, 
Shaughnessy (1992, p. 478) discusses how students deny the existence of 
variability in the real world and do not understand the law of large numbers. 
 
Independent Versus Dependent Events 
 It is admittedly difficult to generate examples of independent events that 
are related to the real world and yet involve neither approximated independence 
nor imprecision in specifying the sample space.  A reasonable example students 
might explore is “Whether it rains today in Austin” and “Whether it rains 
tomorrow in Austin” (dependent events), versus “Whether it rains today in 
Austin” and “Whether it rains a year from today in Austin” (independent events, 
for practical purposes). 
 Traditionally, the concepts of disjoint and independent events are 
introduced on the same day, namely when the addition and multiplication 
probability rules, respectively, are introduced.  Student difficulty with these 
concepts may be aggravated by a Venn diagram of disjoint events, in which the 
physical separateness of the circles erroneously seems to suggest independence of 
the events.  This is, in fact, only true when at least one of the events has a 
probability of zero.  So, while “the independence condition P(A∩B) = P(A)P(B) 
will always be satisfied when P(B) = 0” (Romano and Siegel 1986, p. 5), disjoint 
events in general will not be independent. 
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Randomness 
 Students at the nonstatistical or naïve statistical level (see Shaughnessy, 
1992, p. 485) are likely to have a classical, or equiprobable, model of probability 
that assigns equal probability to all points in the space.  While this model 
ultimately needs to be seen as just one of several, it is adequate for establishing a 
concept of randomness.  Randomness is also related to the “intuitive” 
representativeness heuristic, as discussed in section 4.1. 
 Students tend to underestimate the expected length of longest run in a 
sequence of coin tosses, as well as overestimate the number of runs in the 
sequence.  Schilling (1990) describes an interesting classroom experiment in 
which the class is divided into two groups, one group instructed to record the 
sequence of 200 coin tosses and the other group instructed to write down a 
reasonable simulation.  Using only students’ tendency to underestimate the 
longest run length, Schilling (p. 197) is able to correctly classify which group a 
student was originally in with about 85% accuracy:  “The fact that one can easily 
and in a matter of minutes separate the two groups quite well stimulates 
considerable student interest …  while at the same time strikingly driving home 
the message that human beings make rather poor randomization devices.”   
Schilling (1994) discusses this same topic at a less technical level with more 
emphasis on real-world applications.  Most students are surprised that, for 
example, there is a 50-50 chance of a run (of heads or tails) of length 3 or more 
when a coin is flipped 5 times.  Riehl (1994) demonstrates a simple way to 
compute the probability of r runs recursively, without needing knowledge of 
Markov chains to understand the calculation.  The number-of-runs test for 
randomness (e.g., Berenson and Levine, 1989, pp. 513–518; Lapin 1987, pp. 536–
542) can be used as an important example of nonparametric statistics, a topic not 
often included in most introductory courses.  Length-of-runs can be applied to 
control charts (e.g., Cryer and Miller 1991, p. 292). 
 Also, as Feller (1968, pp. 78, 80) cites a misconception that “a so-called 
law of averages should ensure that in a long coin-tossing game each player will be  
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on the winning side for about half the time, and that the lead will pass not 
infrequently from one player to the other” when in fact “it is quite likely that in a 
long coin-tossing game one of the players remains practically the whole time on 
the winning side, the other on the losing side.”  It turns out that the fraction of 
time that, say, heads is in the lead is least likely to be 1/2 and most likely to be the 
extremes of 0 or 1.  The so-called arcsine laws for random walks can be 
investigated by computer simulations. 
 
Combinatorics 
 Certain combinatoric relationships such as “n choose k” equals “n choose 
n – k” are intuitive because students readily agree, if not come up with the 
observation themselves, that choosing k of n people is equivalent to rejecting n –
 k people.  The factorial formula for permutations (without replacement‚ has a 
very intuitive basis as described in section 2.3.3, but how fast n! grows is not so 
intuitive.  Students consistently underestimate the number of batting order lineups 
for a 9 person baseball team (it’s 9! = 362,880).  Students are quite shocked to 
hear that, for example, there are more possible seating arrangements for a class of 
30 students (and 30 desks) than there are grains of sand that could fit inside 
the Earth. 
 
Probability 
 Many probability rules, such as the inclusion rule, “P (A) ≤ P (B) if A is a 
subset of B,”  are found extremely intuitive by students (see Bar-Hillel and Neter 
1993).  Others, such as P (A or B) = P (A) + P (B) – P (A and B) are found very 
intuitive once the Venn diagram is drawn.  Students also find intuition in a 
geometric  approach to solving probability problems such as the area model in the 
Standards (NCTM 1989, p. 111).   Tree diagrams are also very intuitive for 
modeling a chronological sequence of actions and random events.  The classical 
(equiprobable) view of probability that naïve-statistical students initially have, 
according to delMas and Bart (1989, p. 40), “may be regarded as a special case of 
a more general frequentist orientation of probability.”  Situations involving 
natural  
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generalizations such as this fit the Traditional Position quite well.  Coun-
terintuitive examples in this topic include the birthday problem and déMére’s 
Paradox, as discussed in section 3.4.  Additional examples by Fischbein were 
given in section 3.1. 
 
Conditional Probability 
 Once again, a Venn diagram can be used to make formulas such as P 
(A|B) = P (A and B) / P (B) intuitive.  Shaughnessy (1992, pp. 473–475) 
discusses prob–lems that illustrate the “Falk phenomenon” (which involves a 
conditioning event occurring after the event that it conditions), difficulties in 
selecting a conditioning event, and confusion between conditional and its inverse, 
which is related to the Classification Paradox discussed in section 3.5 and the 
Taxi Problem (Shaughnessy 1992).  Finally, there is the Monty Hall problem (see 
section 3.2). 
 
Independent versus Dependent Variables 
 Students can easily provide their own examples.  For comparison 
purposes, it is often helpful to have examples of each grounded in the same real 
world situation (as was done with the “rain” example for independent and 
dependent events).  To use dice (a fair red die and a fair green die) as this 
common context, an example of dependent variables is as follows:  

  W = “whether or not the sum of a red die and a green die equals 3”  
  and 
  Z = “the value of the red die.” 

 A trivial example of independent variables would be  

  W = “the value of the green die” 
  and 
  Z = “the value of the red die.” 

 What is not initially intuitive, however, is that two variables can appear to 
have “overlapping” sample spaces, and yet be statistically independent, such as 
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  W = “whether or not the sum of a red die and a green die equals 7”  
  and 
  Z = “the value of the red die.” 

 Also, dependent variables need not be correlated.  While this fact may not 
have a great deal of practical use or significance for students in an introductory 
course, it is a fact they are capable of verifying, and may help them be less quick 
to assume that, for example, correlation implies causation in a particular situation.  
See, for example, Romano and Siegel (1986, p. 63, example 4.11), in which X 
and Y are the sum and difference, respectively, of two coin tosses where 1 = 
heads and 0 = tails.  X and Y are uncorrelated since Cov (X,Y) = E (XY) – E (X) 
E (Y) = 0 – (1) (0) =  0.  But X and Y are not independent, because P (X = 0 and 
Y= 0) = 0 ≠ (1/4) (1/2) P(X = 0) P(Y = 0).  
  
Distributions, Limit Theorems 
 The intuitiveness of the general shapes of the most commonly used 
distributions can be brought out, such as the symmetry of the normal curve or the 
asymmetry of a binomial distribution with p ≠ .5.  Weinberg (1981, p. 280) 
provides intuition for the shape of the F distribution.  Specific distributions, 
especially discrete distributions, often have a physical balls and urn model that 
can serve as a concrete representation.  For example, the probabilities of drawing 
six balls without replacement from balls numbered 1 to 50 (as in Lotto Texas) can 
be represented with the hypergeometric distribution.  Also, students consistently 
find it intuitive that the expected value of the binomial distribution is the product 
of its two parameters, n and p. 
 While it is intuitive that the sampling distribution of the sample mean has 
less variance than the original population, it is not at all intuitively obvious why it 
is so nearly normal for modest values of n, regardless of the shape of the original 
population.  The typical proofs, of course, require calculus, and so an introductory 
course can best demonstrate the Central Limit Theorem through simulation, either 
on computer or with in-class low-tech techniques (e.g., Johnson 1986).  The Law  
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of Large Numbers also has both intuitive and counterintuitive aspects (as 
mentioned in section 3.1), and can be used to confront the erroneous Law of 
Small Numbers (or Law of Averages, or Gambler’s Fallacy) that students often 
have.  Indeed, Moore and McCabe (1993) do this. 
  
Estimation 
 The target analogy of Moore and McCabe (1993, pp .293–294) effectively 
illustrates the ideas of bias and variability in a point estimator: “Think of the 
parameter as the bull’s-eye on a target and the sample estimate as an arrow shot at 
the target.”  This analogy is also applied to interval estimation in Gonick and 
Smith (1993, p. 116):  “Consider an archer-pollster shooting at a target.  Suppose 
that she hits the 10 cm radius bull’s-eye 95% of the time. …  Sitting behind the 
target is a brave detective, who can't see the bull’s-eye.  The archer shoots a 
single arrow.  Knowing the archer’s skill level, the detective draws a circle with 
10cm radius around the arrow.  He now has 95% confidence that his circle 
includes the center of the bull’s-eye!” 
 From a class taught from the Traditional Position, it is not always clear 
that some simple or commonly used estimators may lack important desirable 
properties.  For example, students can readily see that the sample range 
underestimates the population range.  (In general, most maximum-likelihood 
estimators are also biased estimators.)   
 It is also not immediately obvious that some estimators with desired 
properties permit impossible results.  There are numerous such examples when 
calculus is permitted, such as DeGroot’s (1975, p. 353) example of X denoting 
the number of failures that occur before the first success is obtained (the trials are 
independent Bernoulli random variables with common unknown success 
probability p).  X has a geometric distribution with pmf f(x) = pqx, q = 1 – p.  The 
unique unbiased estimator T(x) of p from the observation x is 1 if x = 0 and 0 if 
x ≥ 1.  This can be obtained by setting E(T(x)) = ∑T(x)pqx equal to p, and 
equating powers of q.  But “if the first success is obtained on the second trial, i.e., 
if x = 1, then it is silly to estimate that the probability of success p is 0.”  A  
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simpler example is the method of moments estimator for the maximum of a 
discrete uniform distribution. In other words, when sampling with replacement is 
done from a population numbered 1 to N,  the method of moments estimator for N 
is easily seen to be 1 less than twice the sample mean.  This estimator could be 
less than the largest observation we have seen, and we know N is at least as big as 
that observation! 
 
Regression 
 In parallel with the development of measures of spread, a structured 
sequence of questions can help lead students through most of the “stages” often 
used to motivate simple, linear least-squares regression in a textbook (e.g., 
Wonnacott and Wonnacott 1977, chapter 11):  fitting a line by “eye,” fitting a line 
to minimize the sum of errors, fitting a line that minimizes the sum of the absolute 
errors, and finally, fitting a line that minimizes the sum of the squares of the 
errors.   The regression line itself can be thought of a smoothed version of the 
graph of averages of Y given X, and its slope can be thought of as average 
increase of Y per unit increase of X, etc. 
 Students are often unaware and puzzled by what Freedman (1991, p. 160, 
emphasis in original) calls the regression effect:  “In virtually all test-retest 
situations, the bottom group on the first test will on average show some 
improvement on the second test and the top group will on average fall back.  This 
is the regression effect.  The regression fallacy consists of thinking that the 
regression effect must be due to something important, not just the spread around 
the line.”  This can be demonstrated with in-class activities.  For example, 
Levin  (1993) describes a method of demonstrating this effect to an introductory 
statistics class using two standard decks of playing cards.  Lock and Moore 
(1991) relate an even simpler version by Colin Sacks with index cards numbered 
1 to the number of students.  Karylowski (1985) gives a classroom demonstration 
using dice but grounded in a real-life context.  The regression effect is given 
“numerical intuition” by Moses (1986, p. 328):  “(y – y)/sy = r (x – x)/sx … the 

extremeness of a given x (by extremeness  we mean distance from x, measured in 
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standard deviation units) is not repeated in the extremeness of y (the estimated 
average of y at the given x); rather, a discount factor equal to r is first applied.” 
 
Correlation 
 In addition to the merry-go-round horses metaphor in section 2.3.1, there 
are such intuition builders as the square of correlation interpreted as the 
proportion of variation in one variable explained by the other variable, or the 
correlation interpreted as the slope of the regression involving the variables after 
each is standardized (transformed into z-scores).   Students knowing trigonometry 
(see section 2.3.2) can be shown the correlation between X and Y as the cosine of 
the angle between two vectors whose lengths are proportional to the standard 
deviations of X and Y, respectively, such that the near diagonal of the completed 
parallelogram  has length proportional to the standard deviation of X + Y. 
 Moses (1986, p. 319) lists an intuition-refining example that is usually 
omitted in a traditional course: 
 
The strength of the correlation between x and y will be reduced in a 
subpopulation consisting only of individuals with x values lying above a certain 
cutoff value A, or only of those with x values lying below a certain cutoff value 
B, or only of those lying between two limits, A and B.  In each instance, the 
variability in x is reduced … .  If for some reason the subpopulation is chosen to 
consist of individuals with x values lying outside an interval A, B, the variability 
in x is thereby increased and the correlation coefficient will be larger. 
 
Weisberg (1985, p. 76) adds “that even in the unusual event of analyzing data 
drawn from a multivariate normal population, if sampling of the population is not 
random, the interpretation of summary statistics such as R2 may be completely 
misleading … .”   
 Most introductory statistics courses especially those preparing students for 
courses in the social sciences, stress like a mantra that “correlation does not imply 
causation.”  Unfortunately, the fact that this distinction is blurred by the media so 
frequently makes it difficult for students to keep in mind that correlation between  
X and Y could mean any of at least five interpretations, such as:  X causes Y, Y 
causes X, X and Y cause each other, X and Y are caused by a third variable Z, or 
the correlation is completely spurious.  Students can enjoy critiquing examples of 
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the latter such as “a high positive linear relationship between the birthrates in 
counties and the density of storks in the counties (Haack 1979, p. 264)” or 
between high tuberculosis death rates and living in Arizona.  Cryer and Miller 
(1991, pp. 151–152) have a useful discussion of three criteria that would have to 
be established before “X causes Y” could be claimed:  consistency across 
contexts, responsiveness of Y to X, and model or mechanism. 
 Also, zero correlation need not imply no relationship, as in the example of 
Y = 6X – X2, or in the case of certain linear situations that have outliers (the 
correlation coefficient can be extremely sensitive to an outlier in small data sets).  
A more subtle example (perhaps subtle to the point of being non-intuitive rather 
than counterintuitive to most students) involves ecological correlations, which 
“tend to overstate the strength of an association,” as Freedman et al. (1991, 
p. 141) discuss. 
 
Hypothesis Testing 
 Students have already been exposed to the basic sequence of the scientific 
method, and can readily follow the structure of metaphors such as the courtroom 
or leaves from a tree trunk, as discussed in section 2.3.1.  Also, students can 
steadily connect a confidence interval with a two-tailed hypothesis test, as many 
books do (e.g., Anderson, Sweeney, and Williams 1990).  The implementation of 
testing, however, invokes serious questions. 
 As Freedman (1991, p. 510) makes the general point, “Nowadays, tests of 
significance are extremely popular.  One reason is that the tests are part of an 
impressive and well-developed mathematical theory. …  The language of testing 
makes it easy to bypass the model, and talk about ‘statistically significant’ 
results.”  As a result, students often fail to realize that [ibid.] “[t]he test will not 
check to see whether this model [specified explicitly or implicitly by the 
investigator] is relevant or plausible.  The test will not measure the size of a 
difference or its importance.  And it will not identify the cause of the difference.”  
Indeed, students are not always exposed to the fact that with a large enough  
sample, any difference (whether it has practical significance or not) can be 
statistically significant.  A common example is birth rates between the genders.  
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With a too-often unquestioning use of a 95% confidence standard, students are 
even less likely to have been exposed to the idea that a practically significant 
difference may not always result in a statistically significant result.  Students can 
benefit from a classroom ESP-detection experiment (Lock and Moore 1991, p. 3) 
in which each student tries to guess suits of 25 cards and is then forced to 
interpret the few “significant results” that will likely occur in a class of 30 
students.  In general, Traditional instructors may play these implications down not 
to draw attention to the fact that statistical and real-world views can be different.  
This, however, is a good opportunity to stress the need for good experimental 
design so that a practically significant result will also have statistical significance.  
The necessity of understanding a precise meaning of a word (“significance”) in a 
statistical setting has already been encountered in a course with words such as 
independence and population. 
 The Classification Paradox of section 3.5 was referred to in the topic of 
conditional probability, but certainly can also be discussed in a setting of hypoth-
esis testing.  Also, the frequentist interpretation of p-value = P (data | H0 is true) 
is not equal to P (H0 true), as students often would like to assume.  While it is 
beyond the scope of the present study to pursue this further, the reader can find 
relevant discussion in Albert (1994). 
 
Experimental Design 
 Given a simple real-world experiment to construct and conduct, students 
on their own will usually express the need for a plan that invokes the concepts of  
(in ascending order of intuitiveness) blocking, randomization and replication, 
which are widely considered the three most important principles of experimental 
design.  Such an experiment can be simulated by real-world advertisements, such 
as some variation of the “Coke vs. Pepsi” experiment described by Garfield 
(1993).  The use of this experiment and the previous use of two others were 
described by Solomon (1979).  A useful metaphor for experimental design is  
found in audio communication in that the goal is to get a specified quantity of 
information (precision) at lower cost by increasing signal-to-noise ratio.  Nature 
sends both a “signal” (information) and “static” (uncontrolled background noise).   
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Other authors encouraged students to identify experimental design concepts in 
situations such as the sport of basketball (Polyson and Blick 1985). 
 There do not seem to be any counterintuitive concepts yet identified for 
this topic, partially because the basic concepts are in fact fairly intuitive, and also 
because many of the details are sufficiently complex as to be non-intuitive to 
a novice.  The main exception is interaction effects, which are often omitted from 
an introductory course although they can be discussed with a minimum of 
technical discussion.  Schaefer (1976, p. 103) goes so far as to say that interaction 
is “vital as a counter to some very general self-inhibiting human behaviors.  Most 
of us … ‘think’ in very few dimensions (sometimes only one), rather than the 
many that are usually necessary to give a fairly adequate account of an event.” 
 
Analysis of Variance (ANOVA) 
 Numerical intuition for the formulas can be given, as described in section 
2.3.3.  Further intuition can be cultivated by demonstrating its equivalence to 
regression in which the independent variables are dummy (indicator) variables.  
Also, Dillbeck (1983, p. 21) describes a very useful activity for single-factor 
ANOVA in which “the questions led students sequentially through a process of 
reasoning which arrived at the goal of the lesson and which, at each step, allowed 
the students to experience an ‘aha’ of figuring out a point.”  This latter type of 
intuition building is more important than the numerical intuition because, as 
Rubin (1994) states, “teaching concepts in anything is more difficult than teaching 
computations, and the computations do not really help.” 
 There do not seem to be any counterintuitive concepts yet identified for 
this topic, partially because the basic concepts are in fact fairly intuitive, and 
other details are sufficiently complex as to be non-intuitive to a novice. 
 
Sampling 
 Dietz (1993, p. 104) describes an activity she has used in which “students 
have ‘invented’ simple random sampling, systematic sampling, stratified 
sampling, and various combinations thereof.”  Dietz describes the activity as 
follows:  “Students are presented with a dataset consisting of gender, SAT verbal 
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score, SAT mathematics score, and high school grade point average for 317 
freshmen from North Carolina State University.  The students, who have not yet 
studied sampling, work in groups of three or four to generate three possible 
methods for selecting a representative sample of 20 freshmen from the population 
of 317.”  A variation of this exercise could be constructed to motivate additional 
sampling schemes such as cluster sampling or sequential sampling.  The “random 
rectangles” activity (Bentley et al. 1993) gives studetns a chance to compare their 
judgmental samples with random samples in estimating rectangles’ areas.  The 
fact that students’ judgmental samples consistently overestimated the truth is 
valuable evidence for the value of random sampling. 
 The initial counterintuitiveness of required sample size was discussed in 
section 3.6.  A further blow to the overemphasis on sample size occurs in Lapin 
(1987, pp. 68–71), who gives six reasons why a census can be less desirable than 
a sample:  economy, timeliness, population size, inaccessibillity, accuracy, 
destructive observations.  A “less can be more” connection can be made to 
regression in that a model may not always be improved by adding more predictor 
variables, especially if they are highly correlated with variables already in 
the model. 
 Another excellent counterintuitive example to use with sampling is the 
Inspection Paradox because it is a chance to revisit and generalize the “average 
class size” example encountered in the earlier topic of central tendency measures.  
It is also a chance to explore a deeper type of bias that can result from sampling 
from a fixed point, a situation that students have likely already considered at a 
surface level, such as bias from an opinion poll about abortion if one surveys 
people passing by a point near a Roman Catholic church.  Stein and Dattero  
 
(1985, p. 96) provide two concrete examples of sampling bias that illustrate the 
paradox: 
 
When faced with the problem of estimating the average size of a family, students 
frequently suggest polling their classmates or standing on a corner and asking 
people who walk past.  In using these methods, bias may be introduced since we 
are sampling people and not families.  Or ask the students how to measure the 
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average speed of all the cars on a freeway.  Measuring the speed of cars passing a 
fixed point will give biased results. 
 
Because larger families and faster cars will be sampled more frequently in these 
situations, there will be positive bias in estimating the means. 
 The families example is further grounded with connections to the greater 
likelihood of picking an American that’s from Texas than from Idaho, or picking 
a random point that lies on a long piece of yarn when many long and short pieces 
are lined up end to end.  Smith and Gonick (1993) explore a slight variation on 
the car scenario—with a moving observer. 
 Finally, the related Inspector’s Paradox (Reinhardt 1981) is a useful dem-
onstration of the importance of random sampling as well as a more subtle 
example than students are usually given of how nonrandomness can be 
introduced.  This paradox involves looking at the length of a string of coin tosses 
ending in heads, and comparing this length to the theoretical average of two 
tosses for a fair coin.  One method (A) selects the string of tosses that includes the 
tenth toss and a second method (B) selects the string that follows the A string.  
“Roughly speaking, B’s procedure is random because the coin has no memory, 
but since long strings have a greater opportunity to include the tenth toss [or any 
other specific toss, for that matter], than short ones, A’s is not” (p. 106).  
Reinhardt concludes by relating an illustration that is easily carried out in a 
classroom (p. 107): 
 
Ask the students in the class to give the number of boys and girls in their families.  
Tabulate the results separately for the boys and girls in the class and calculate the 
average number of boys per family and the average number of girls per family. … 
The claim is that families tend to ‘run’ to children of one sex as the data 
superficially indicate.  The difficulty is that the families of the boys in the class 
are not a random sample of families, nor are the families of the girls. 

CHAPTER 5 
 

CONNECTIONS TO TEACHING AND LEARNING 
 
 
5.1  Small-Group Cooperative Learning  
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 Many of the activities detailed in the “intuitive” sections of the syllabus-
driven model are well suited for small-group (i.e., 2–5 students per group) 
cooperative learning, a mode of learning that has been well documented in 
mathematics education, but only somewhat in statistics education specifically.  
Garfield (1993) gives the most complete overview of the latter, including 
definitions, motivations, guidelines, strategies, and resources.  Although there 
have been hundreds of “research studies documenting the effectiveness of 
cooperative learning activities in classrooms,” Garfield (1993) names only three 
studies that have examined the use of cooperative learning in college statistics 
courses.  One is Dietz (1993), which was discussed in section 4.7, at the end of 
the SPICE.  Also, “Shaughnessy (1977) found that the use of small groups 
appeared to help students overcome some misconceptions about probability and 
enhance student learning of statistics concepts. …  Jones (1991) introduced 
cooperative learning activities in several sections of a statistics course and 
observed dramatic increase in attendance, class participation, office visits, and 
student attitudes.”  Studies not mentioned by Garfield include Borresen (1990), 
Cumming (1977, 1983, 1984), and Reynolds et al. (1991).   
 Under the heading “concerns about using small groups”, Garfield (1993) 
gives instructors a caution that could be applied to counterintuitive examples in 
general:  “Instructors may be discouraged by students who resist an activity that 
appears challenging and difficult, forces them to think, and does not allow them to 
be passive learners, because students are used to sitting in lectures where they are 
not required to talk, solve problems, or struggle with learning new material.  
Students may want the teacher to do more explaining, and telling them the right 
answers, rather than struggle with a problem themselves.”  The good news is that  
 
the strategies and references Garfield then offers to overcome this may help an 
instructor using the SPICE. 
 A final point is that cooperative learning is arguably as appropriate for 
statistics education as for any other field in that real-life statistics is usually a 
multidisciplinary endeavor involving a team of programmers, consultants, high- 
and low-level statisticians, managers, subject-matter experts, etc. 
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5.2  Structured Controversies 
 The SPICE of section 4.7 offers a number of counterintuitive examples 
which may cause controversy, at least initially.  The controversy is occurring as 
cognitive dissonance within each person, and is also being played out between 
students in the classroom as well.   Structured controversies are a particular form 
of group activity, and may be thought of as either a special case of cooperative 
learning or a different type of group learning, depending on one’s definitions. 
Either way, much of the logistics involved with cooperative learning groups apply 
to structured controversies.   
 Derry et al. (pp. 6–7, in press) offer a connection between statistics, 
controversy and learning opportunities: 
 
[S]tatistics as a subject matter represents controversial knowledge (e.g., Nicholls 
& Nelson 1992), an idea that should influence how statistics is taught.  For if 
statistics is controversial subject matter, then it should not be taught as a set of 
final-form, universally accepted concepts that can be handed down by authority 
and conveyed to students by professors and textbooks.  At a minimum, statistics 
courses might inform students about statistical debates.  We believe that students 
could gain even more by actually discovering and participating in such 
controversies.  Participating in statistical controversy is what scientists do when 
they conduct research, for their work involves selecting statistical tools that are 
perceived to be appropriate for the problem at hand, using them as a basis for 
conceptually analyzing that problem, and, often, defending their choices to other 
scientists. 
 
Indeed, statistics is controversy, ranging from specific conflicting polls and 
studies published by the media to current debates among statisticians on 
paradigms of inference (Bayesian, frequentist, etc.).  As Moore (1992, p. 16) 
states, “What is  
most striking is that the position that statisticians take on foundational issues has 
an immediate impact on their statistical practice. …  Even elementary text cannot 
avoid taking sides, even if only implicitly, on questions such as the role of prior 
information in inference and whether statistical tests are decision procedures or 
merely assess the weight of evidence.”  Any method of instruction that exposes 
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students to this process of real-life statistics supports the spirit of current 
mathematics education reform. 
 There are a variety of instructional styles which are oriented towards 
utilizing the conflict between normative conceptions and students preconceptions, 
(i.e., students’ primary and secondary intuitions).  Borasi (1994, p. 171) states:  
“Research on conceptual change in science learning (e.g., Brown & Clement, 
1989; Hewson, 1981; Strike & Posner, in press) has also suggested that students’ 
specific misconceptions could be used as a way to generate conflicts that, in turn, 
may expose and challenge the students’ limited theories about how the world 
operates.  A similar principle informs ‘conflict teaching,’ a strategy developed for 
mathematics instruction by Bell and his colleagues (Bell, 1983, 1986; 
Swan, 1983).” 
 In an article discussing a related idea called academic controversy, 
Johnson and Johnson (1993, p. 43) use language that seems very consistent with 
that of the NCTM (1989): 
 
If students are to become citizens capable of making reasoned judgments about 
the complex problems facing society, they must learn to use the higher-level 
reasoning and critical thinking processes involved in effective problem solving, 
especially problems for which different viewpoints can be plausibly developed.  
To do so, students must enter empathically into the arguments of both sides of the 
issue, ensure that the strongest possible case is made for each side, and arrive at a 
synthesis based on rational, probabilistic thought. 

 
Johnson and Johnson (1992, p. 125) define controversy as “when one 

student’s ideas, information, conclusions, theories, and opinions are incompatible 
with those of another, and the two seek to reach an agreement.”  Without 
describing the methodology (except for mentioning that one study was a meta-
analysis), they present the results of their studies from 1979 through the present to 
discover the effects of structured controversy.  They found that “compared with 
concurrence-seeking, debate, and individualistic efforts”, controversy tends to 
yield: greater mastery and retention of subject matter, greater ability to generalize, 
higher quality decisions and solutions to complex problems, more frequent 
creative insights, and various other benefits. Johnson and Johnson (1993, p. 44) 
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cite research by Ames and Murray which concludes that “conflict qua conflict is 
not only cognitively motivating but that the resolution of the conflict is likely to 
be in the direction of correct performance.”  Classroom prerequisites are given in 
Johnson and Johnson (1988). 
 Roth (1990, p. 162) found conceptual conflict could be created in many 
ways, including laboratory demonstrations, experiments and student writing.  In 
addition to this flexibility of instruction, Johnson, Johnson, and Smith (1991, 
7:15) described these specific benefits from “Structured Controversies in 
Science”: 
 
To ensure that higher-level reasoning, critical thinking and metacognition take 
place, however, students need the intellectual challenge resulting from conflict 
among ideas and conclusions.. Controversy, compared with concurrence seeking, 
debate and individualistic efforts, results in higher achievement, higher-quality 
decisions and problem-solving, more creative thinking, more higher-level 
reasoning and critical thinking, greater perspective-taking accuracy, greater task 
involvement, more positive relationships among group members, and higher 
academic self-esteem. …  Students make an initial judgment, present their 
conclusions to other group members, are challenged with opposing views, 
become uncertain about the correctness of their views, actively search for new 
information and understanding, incorporate others’ perspectives and reasoning 
into their thinking, and reach a new set of conclusions.  While this process 
sometimes occurs naturally within cooperative learning groups, it may be 
considerably enhanced when teachers structure academic controversies. 
 

As delMas and Bart (1989, pp. 42–43) add: 
 
Ross and Anderson argue that the incorporation of new experiences into current 
beliefs is usually a biased assimilation; confirmatory experiences are anticipated 
and readily accepted, while contradictory experiences are seen as exceptions 
and/or treated with skepticism. .In order to overcome these factors, Ross and 
Anderson suggest that effective discrediting experiences are those which require 
subjects to act upon their beliefs [this is consistent with the protocol of 
Shaughnessy 1977] and increase the dissonance between their expectations and 
the actual outcomes. …  There are several reasons as to why this approach may be 
effective.  First of all, when subjects encounter a situation which they believe can 
be  assimilated into their existing schemas but which are not resolved when the 
schemas are applied, the contradictions prepare the subjects to restructure or 
accommodate their schemas.  The argument is that a subject is more likely to 
accept and learn a new strategy if it resolves the contradiction.  Second a 
contradictory situation helps to highlight conflicts between a subject’s present 
strategy and the correct strategy.  Such conflicts provide contrasts between the 
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two frameworks which can aid better recall of the new strategy.  Finally, the 
contradictory situation helps a subject focus on key relationships among variables 
and to disregard the variables which may lead to misjudgments or 
misinterpretations of causal effects. 
 
5.3  Constructivism 
 Using counterintuitive examples is consistent with a constructivist 
perspective.  Constructivism has a strong relationship to primary and secondary 
intuitions (discussed in section 2.2) in that the instructor must recognize that the 
student will be actively involved in the construction of any secondary intuition 
that would replace the primary intuition he entered the classroom already having.  
Also, the connection between constructivism and the Gestalt organization of 
knowledge supported by Fischbein’s origins classification of intuitions is 
discussed at the end of section 2.2.  Constructivism, a theory and perspective in 
which learners actively construct their own knowledge, has been a major trend in 
mathematics education and has made an impact on statistics education as well, 
despite the lack of research that explicitly addresses this.  Many statistics 
curriculum materials are constructivist in nature, such as the ELASTIC software 
of the Reasoning Under Uncertainty curriculum (Rosebery and Rubin 1988, 
p. 207), which employs “interactivity, visualization, and dynamic links to create a 
laboratory in which students can explore the underlying meaning of basic 
statistical concepts and processes.”   According to Stern-Dunyak (1993, p. 13):  
“The ‘new’ teaching, as described by [David S.] Moore, includes:  learning is 
considered a construction of knowledge; teachers are guides and motivators; 
students work in groups on open-ended problems; students discuss problems, get 
feedback; teachers cover less material, but students learn more.”   
  

Such motivation was present in early experiments such as Shaughnessy 
(1977, p. 299, emphasis in original): 
 
A small-group, problem-solving and model-building approach was undertaken in 
the experimental groups … perhaps the transition for students from 
preconceptions and misconceptions of probability to mathematizations of 
probabilistic laws can be facilitated if students are encouraged to experience 
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elementary probability and statistics as a process of describing observed 
experimental phenomena more and more accurately, rather than as a system  of 
rules, axioms, and counting techniques that must be learned and applied to 
problems. 
 
 The bottom line is (Shaughnessy 1992, p. 472, emphasis in original):  
“Our students are not tabulae rasae, waiting for the normative theory of 
probability to descend from our lips.  Students already have their own built-in 
heuristics, biases and beliefs about probability and statistics.”  This agrees with 
Mevarech (1983, p. 420):  “Evidently, erroneous schemata are so deeply 
ingrained in a student’s knowledge base that simply being exposed to another 
statistics course is not sufficient to overcome these errors.”   
 Some educators (e.g., Melvin and Huff 1992) confront these primary 
intuitions by supplementing textbooks with lists of common errors.  Some  
mathematics textbooks  (e.g., Kolman et al. 1993) already incorporate warnings of 
standard errors (with explanations and examples explaining why they are wrong) 
into the text presentation.  Some statistics textbooks (e.g., Moore and McCabe 
1993, p. 327) incorporate this idea with certain topics, such as acknowledging 
both the hot hand theory and the law of averages in discussing the law of large 
numbers.  Of course, having students read about common errors, while helpful, 
cannot be expected to be as effective as having students directly confront errors 
they have actually just made themselves. 
 Given how resistant erroneous schemata can be and given the limited 
success of the Traditional Position in overcoming many of these, it seems that a 
bolder method such as the SPICE may well be one of the most effective or 
efficient ways to provide the active process of feedback and correction needed to 
confront these erroneous schemata.  Confrey (1990) goes so far as to say that a  
constructivist teacher is concerned more with teaching students how to develop 
their cognition than about mathematical structures.  Certainly counterintuitive 
examples are very effective in developing cognition (and metacognition) for the 
reasons discussed in section 4.3.   
 An important question to consider is to what extent constructivism in 
statistics education is or should be expected to be any different than in 
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mathematics or science education as a whole.  Most of the conceptual change and 
bridging analogies literature, for example, has been in science education.  Konold 
(1993) does not expect “that the constructivist approach would play out any 
differently in application to statistics education than it has in mathematics 
education, and that what it is mostly about revolves around the importance of 
considering the nature and development of student thinking in the design of 
educational materials and approaches.”   
 Nevertheless, it does seem natural that the extent to which mathematics 
and statistics have fundamental differences in foundations (e.g., Moore 1993) 
would be reflected in the constructivist educational approaches.  Statistics 
involves constructing models, graphs and data collection instruments, and the fact 
that there is usually more than one defensible approach seems in the spirit of 
individual students each constructing his or her own knowledge.  In fact, the fact 
that the SPICE points out the pitfalls of media graphs that have been 
misconstructed further emphasizes the dynamic, human process that statistics is.   
 The key point here is that constructivist philosophy underlies both 
cooperative learning and structured controversies in that students play an active 
role in constructing their own knowledge, are engaged in confronting their 
conceptions, and are involved in reflective thinking.  Garfield (1993) suggests this 
connection when she states, “Small-group learning activities may be designed to 
encourage students to construct knowledge as they learn new material, 
transforming the classroom into a community of learners, actively working 
together to understand statistics.  The role of the teacher changes accordingly 
from that of ‘source of information’ to ‘facilitator of learning.’ ” 
  

Unfortunately, it appears that while many researchers and reformers are   
embracing on the surface a perspective of constructivist cognition over a 
cookbook approach, few are fully implementing it, and fewer still have  given 
serious attention to the natural role of counterintuitive examples within this 
perspective.  The situation for mathematics and statistics instruction seems similar 
to the observation of Stofflett and Stoddart (1994, pp. 32–33): 
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The traditional didactic instruction that occurs in the majority of science content 
courses rarely challenges or improves student preconceptions about science 
content (Wittrock 1986). …  This traditional approach to science teaching persists 
despite research on scientific cognition that has identified the process of 
conceptual change as a necessary prerequisite for the formation of scientifically 
validated theories (Hewson & Hewson 1988; Posner, Strike, Hewson, & Gertzog, 
1982).  Consequently, even those students who have passed college science 
content courses retain misconceptions about the content they were taught 
(Champagne, Gunstone & Klopfer 1985; McClosky 1983).  This problem is 
particularly significant for elementary education majors who take only a few 
science content courses and then are expected to be able to teach a broad range of 
science content to children. 
 
 Teachers need time and training to learn how to (National Science 
Foundation 1992, p. 38) “probe for a misconception, ask questions to clarify 
students’ beliefs, suggest events that contradict students’ flawed beliefs, 
encourage non-demeaning discussion, guide students toward constructing valid 
scientific concepts, and finally reevaluate students’ comprehension.” 
 In summary, constructivism and counterintuitive examples share many 
things, including:  acknowledgment of students’ beliefs prior to instruction; active 
engagement of those prior beliefs in a way that leads to deeper understanding and 
empowerment; the role of metacognition; the role of teacher as a facilitator more 
than as a source of static knowledge, etc.; the amenability to exploration, group 
work, critical thinking; and difficulty in use by teachers who were taught in the 
traditional manner. 
 
 
 

 
CHAPTER 6  

CONCLUSIONS 
 

 
 
6.1 Summary 
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 The power of paradox has been explored throughout this study.  Authors 
such as Eves (1990) and Rapaport (1967) discuss the important role 
counterintuitive results have had throughout the history of mathematics in the 
actual growth of the discipline.  This study has further argued that 
counterintuitive examples, used appropriately, can be a powerful facilitating force 
in student learning.  Some counterintuitive examples temporarily descend into 
chaos before then resolving to a deeper sense of order.  Perhaps developing a 
spirit of the intuition of the counterintuitive (to modify Fischbein’s phrase 
“intuition of the non-intuitive”), can help teachers and learners of statistics 
become more comfortable with the flow between order and chaos, as Davis and 
Hersh (1981, pp. 172–179) illustrate.   
 Definitions of intuition, intuitiveness, non-intuitiveness, and counter-
intuitiveness were stated and explored.  Connections in both directions were made 
between statistics and learning theory.  This study has provided teachers of 
statistics with a comprehensive survey of the role intuition can play in their 
classroom, including conceptual, geometric, and numerical types of illumination.  
A surplus of terminology and difficulties in measurement were addressed as 
problematic issues.  While there is no unification in sight to the former, given the 
multidisciplinary nature of the field, there are hopeful results for the latter that 
have been operationalized in related fields.  
 Four criteria for counterintuitive examples were set forth and several of 
the most important or popular examples were discussed, including Simpson’s 
Paradox, average class size, deMéré’s paradox, the birthday problem, the 
Classification Paradox and the required sample size for estimating a proportion. 
  
 
 
 

The Traditional Position and Alternative Positions were discussed and 
critiqued, before being compared and synthesized in a new model named SPICE.  
After addressing model building concerns, the SPICE was presented around the 
structure of a syllabus, with counterintuitive examples matched to virtually every 
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major topic on an introductory college statistics course syllabus.   While many 
courses now being taught currently use material that correspond to parts of the 
SPICE, no course is using all of it, and few courses using any of it are using it 
with the overall context of purpose and intention discussed in chapter 4. 
 Finally, chapter 5 presented connections and additional discussion 
concerning group work and constructivist learning, both of which naturally  
complement and support the SPICE. 
 
6.2 Problematic Issues 
 Assessment instruments in statistics are still sorely lacking.  This is an 
obstacle to assessing the results of a lesson or course that may include 
counterintuitive examples, as standard assessment instruments rarely take into 
account higher-order thinking or allow subjects to give reasons for their answers.  
It is quite possible to give the same answer (correct or incorrect) using completely 
incompatible heuristics. [e.g., Shaughnessy, 1992, p. 479:  “This is reminiscent of 
the gambler’s fallacy, though the children may … have been using Konold’s 
outcome approach.”] Garfield (1991) reviews five categories of research “relevant 
to the assessment of statistical understanding.  These are:  1) students’ attitudes 
and anxiety towards learning statistics, 2) students’ computational skills in using 
probability and statistics, 3) students’ misconceptions of probability and statistics, 
4) conceptual frameworks for assessing statistical learning, and 5) methods of 
assessing mathematical learning and problem solving.”  The measurements of 
dissonance, deep-seatedness and difficulty from psychology and science 
education may have more to contribute to our attempts to assess intuitiveness of 
content or intuition of students (see section 2.4.). 
 The dynamics of intuition and intervention may be different at different 
levels (see, for example, Shaughnessy 1992, p. 485: non-statistical, naïve- 
statistical, emergent-statistical, pragmatic-statistical) of statistical maturity.  This 
study limited its focus to introductory college courses, which would have only a 
part of this spectrum (certainly there should be no pragmatic-statistical students in 
such courses!), so this relationship should be investigated further.  What is 
required to effect a transition from the first to the second level may be 
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qualitatively different from what is required to effect a transition from the second 
level to the third, for example. 
 While teacher support will be needed to use these new curricula and 
pedagogical techniques, it should become less and less necessary as teachers 
gradually incorporate group work into their instruction in general, and as teachers 
become more aware of their own misconceptions and how they overcame them.  
As mentioned in section 5.1, Garfield (1993) lists numerous resources for teachers 
wanting to become more confident and competent in the use of cooperative 
learning activities.  Structured controversies in particular may be less familiar to 
teachers than cooperative learning groups in general.  Also, if structured 
controversies  are used with counterintuitive examples, they will require more 
care in setup, rather than more intuitive group work in which the instructor can 
spend more time waiting for students to discover the knowledge. 
 A specific kind of resistance that may be encountered from some 
instructors concerns the counterintuitive examples for which the power of 
statistics to deceive is explored.  For example, section 4.1 cited Burrill’s call not 
to emphasize this power.  Care must be taken to ensure that such examples are 
explored with the utmost attention to ethics and responsibility as well as 
empowerment and self-defense. 
 Teachers’ resistance to counterintuitive examples can be addressed by 
showing them supporting passages from the NCTM (1991, pp. 128, 134):  
 
[Mathematics and mathematics education] should be designed deliberately to help 
teachers rethink their conceptions of what mathematics is, what a mathematics 
class is like, and how mathematics is learned. …  Teachers need opportunities to 
revisit school mathematics topics in ways that will allow them to develop deeper 
understandings of the subtle ideas and relationships that are involved between and 
among concepts. 
 
 A more general dilemma that remains (Stofflett and Stoddart, p. 45) is 
 
the expectation that teachers can learn to be constructivist teachers when they 
have not been constructivist learners.  The fundamental assumption of construc-
tivism is that learners construct understanding through personal experience.  
Teachers’ own experiences as learners powerfully influence their instructional 
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beliefs and practice (Lortie, 1975).  It should come as no surprise that teachers 
who learned science through didactic methods teach science didactically. 
 
This in turn brings to mind a point by Schoenfeld (1987, p. 27) that some 
misconceptions arise from the general classroom experience with formal 
mathematics.  Perhaps the greatest challenge is to train people to teach in a way 
that at first will feel unfamiliar if not outright counterintuitive! 
 
6.3  Additional Directions for Research 
 The considerable body of literature on misconceptions dominates most of 
the literature on the teaching and learning of statistics (see Shaughnessy 1992), 
and should remain a major area of interest for some time.  There is room for 
further connections to be made between counterintuitive examples and 
misconceptions.  These connections can be on the general level, such as the idea 
that counterintuitive examples correspond to a subset of misconceptions that 
students might have.  These connections can also be specific, such as the average-
the-averages misconception and Simpson’s Paradox, as discussed in section 3.3.  
Also, research on utilizing student errors (Borasi 1994) needs to be further 
examined for connections to this study.   
 A controlled experiment involving the effect of structured controversies 
with counterintuitive examples could be very helpful.  In covering the topic 
“relations in categorical data” (e.g., Moore and McCabe 1993, section 2.5),  one 
group could work through a real-life Simpson’s Paradox situation, while a control 
group works routine two-way table problems from the end of the chapter.  Then 
both groups take the same one-problem post-test involving making a correct 
interpretation from a three-way table of data.  For an example for the topic 
“conditional probability,” one group would work through a real-life situation with  
the counterintuitive result of the “Classification Paradox,” while the control group 
would work a routine “tree” problem such as p. 358, exercise 4.81 in Moore and 
McCabe (1993). 
 Individual differences were not examined in this study (see section 4.6), 
but it may be valuable to do so.  Also, there may be group differences relevant to 
this study.  For example, Fidelman (1992) relates paradox resolution to 
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hemispheric dominance, which he in turn discusses in the context of gender 
differences. 
 It needs to be investigated how to present statistics so that students are not 
turned off by what they might perceive to be a needlessly cautious or legalistic 
flavor of many of the statements.  For example, students should not merely be told 
the assumptions of a hypothesis test without also being given a feeling for how 
robust they are (e.g., the F test for variances is much more sensitive to 
nonnormality than is the t-test for means).  Also, when covering the “A does not 
imply B” statements in the SPICE, students and instructors should be aware of 
how common and also how potentially important the counterexamples truly are.  
If students suspect that something is virtually always true, they may just consider 
it true, even though they may dutifully recite mantras such as “correlation does 
not imply causation” on exams.  If instructors truly want to impart a cautiousness 
in statistical reasoning, they must choose their points selectively and have 
concrete examples (perhaps counterintuitive examples) ready to back them up. 
 Just as not all outliers are equally influential, it is assumed that not all 
counterintuitive examples will be equally effective in achieving the benefits and 
goals of instruction listed in section 4.3.  It is hoped that future research will help 
determine which counterintuitive examples should be given highest priority for 
inclusion in the introductory course. 
 Qualitative research methods, which have only recently begun to play 
more than a limited role in mathematics education (see Eisenhart 1988), could 
play an invaluable role in providing a deeper understanding of the process 
activated by a group of students grappling with a counterintuitive example in a 
real-life context.  As Garfield and Ahlgren (1988, p. 55) point out, “It is possible  
that a great deal of research, in focusing on the correctness of answers, has missed 
the subjects’ perception of what the question was—and so misestimated the 
subjects’ reasoning.” 
 Surveys should be conducted to determine what examples students 
consider counterintuitive, and these results should be compared to teachers’ 
judgments and to a priori considerations (see section 3.1).  Also, teachers should 
be surveyed to determine what examples they most regularly use and why.  It is 
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also recommended that an analysis be conducted of the similarities among, and 
differences between, this study and styles of teaching (e.g., structured 
controversy, academic controversy, conflict teaching, errors as a springboard for 
inquiry) mentioned in this study.  In general, there is room for more synthesis of 
the strands of relevant research by educators of psychology, statistics, 
mathematics, and science. 
 Although most traffic between statistics and mathematics has been in one 
direction—from mathematics (e.g., Moore 1993), and although mathematics and 
science education have had a huge head start on statistics education as organized 
fields, this research could be among the first instances of statistics education 
contributing to “other branches of mathematics.”  While the SPICE is a strong 
model for the assumptions made and issues addressed, it is not claimed to be the 
only possible way of synthesizing the Traditional and Alternative Positions.  It is 
fully expected that there will be considerable scholarly discussion concerning 
what features of the model to incorporate into the curriculum. 
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