Clssification of twisting of knots with less than eight crossings

Abstract

In this paper, we study twisting of knots with less than seven crossings. We prove that all these knots are twisted except the seven crossing knot 7_{5}; depicted in Figure 3. Furthermore, we show that 7_{5} is the smallest non-twisted prime knot.

1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be assumed to be oriented unless otherwise stated. A knot is a smooth embedding of S^{1} into the 3 -sphere $S^{3} \cong \mathbb{R}^{3} \cup\{ \pm \infty\}$. All knots are oriented.

Let K be a knot in the 3 -sphere S^{3}, and D^{2} a disk intersecting K in its interior. Let n be an integer. A $\left(-\frac{1}{n}\right)$-Dehn surgery along $C=\partial D^{2}$ changes K into a new knot K_{n} in S^{3}. Let $\omega=\operatorname{lk}\left(\partial D^{2}, L\right)$. We say that K_{n} is obtained from K by (n, ω)-twisting (or simply twisting). Then we write $K \xrightarrow{(n, \omega)} K_{n}$, or $K \xrightarrow{(n, \omega)} K(n, \omega)$. We say that K_{n} is an (n, ω)-twisted (or simply twisted) knot provided that K is the unknot (Figure 1).

Figure 1:
An easy example is depicted in Figure 2, where we show that the right-handed trefoil $T(2,3)$ is obtained from the unknot $T(2,1)$ by a ($+1,2$)-twisting (In this case $n=+1$ and $\omega=+2$). Less obvious examples are given in Figure 7.

2000 Mathematics Subject Classification. 57M25, 57M45
Key Words and Phrases. Twisted Knots, congruence classes of knots, minimum genus function.

Figure 2:

Figure 3:

Active research in twisting of knots started around 1990. One pioneer was the first author's Ph.D thesis advisor Y. Mathieu who asked the following questions in [13]:

Question 1.1. Are all knots twisted? If not, what is the minimal number of twisting disks ?
To answer these questions, Y. Ohyama [17] showed that any knot can be untied by (at most) two disks, in one hand. In the other hand, K. Miyazaki and A. Yasuhara [15] were the first to give an infinite family of knots that are non-twisted. Furtheremore, they showed that the granny knot i.e. the product of two right-handed trefoil knots is the smallest non-twisted knot.

In his Ph.D. thesis [1] , the first author showed that the (5,8)-torus knot is the smallest non-twisted torus knot. This was followed by his joint work with A. Yasuhara [4], in which an infinite family of non-twisted torus knots was given; using some techniques deriving from old gauge theory.

Hayashi-Motegi [9], and M. Teragaito [19] found independently examples of composite twisted knots. In addition, Hayashi-Motegi [9] and C. Goodman-Strauss [8] proved independently that, only single twisting (i.e. $|n|=1$) can yield a composite knot.

This paper is the first of a series of joint papers with a group of undergraduate and graduate students, under the supervision of the first author; including A. Barsha, S. Inderias, T. Bui and A. Giragosian from the University of California at Riverside. We are interested in the following general question:

Question 1.2. Can we classify twisting of knots with less than ten crossings ?
With A. Barsha, we partially anwer this question by proving the following:
Theorem 1.1. All knots with less than seven crossings are twisted, execpt 7_{5}. Furthermore, 7_{5} is the smallest hyperbolic prime non-twisted knot.

2. Preliminaries

There are several obstructions on twisting of knots deriving from congruence of knots and embedding of surfaces in 4-manifolds.

2.1. Congruence classes of Knots:

The notion of congruence classes of knots (due to R. H. Fox [6]) is an equivalence relation generated by certain twistings. A necessary condition for congruence is given by Nakanishi-Suzuki [16] in terms of Alexander polynomials.

Definition 2.1. [16] Let n, ω be non-negative integers. We say that a knot is ω-congruent to a knot L modulo n, ω and write $K \equiv^{\omega} L$ if there exist a sequence of knots $K=K_{1}, K_{2}, \ldots, K_{m}=L$ such that K_{i+1} can be obtained from K_{i} by an $\left(n_{i}, \omega\right)$-twistings, where $n_{i} \equiv 0(\bmod . n)$

Theorem 2.1. (Y. Nakanishi and S. Suzuki [16]) If $K \equiv^{\omega} L$ then
(1) $\Delta_{K}(t) \pm t^{r} \Delta_{L}(t)$ is a multiple of $(1-t) \sigma_{n}\left(t^{\omega}\right)$ for some integer r; where $\sigma_{n}(t)=\frac{t^{n}-1}{t-1}$.
(2) If n or ω is even, then $\Delta_{K}(t) \equiv \Delta_{L}(t)(\bmod .2 n)$.

Example 2.1. Figure 8 shows that $7_{5} \equiv^{2} K$; where K is the unknot.
Example 2.2. If K_{n} is obtained from the unknot K by (n, ω)-twisting, then $K_{n} \equiv^{\omega} K$. In particular, Theorem 2.1 applies to twisted knots.

2.2. Embedding of surfaces in 4-manifolds:

In the following, $b_{2}^{+}(X)$ (resp. $b_{2}^{-}(X)$) is the rank of the positive (resp. negative) part of the intersection form of an oriented, compact 4-manifold X. Let $\sigma(X)$ denote the signature of X. Then a class $\xi \in H_{2}(X, \mathbb{Z})$ is said to be characteristic provided that $\xi . x \equiv x . x$ for any $x \in H_{2}(X, \mathbb{Z})$ where $\xi . x$ stands for the pairing of ξ and x, i.e. their Kronecker index and ξ^{2} for the self-intersection of ξ in $H_{2}(X, \mathbb{Z})$.

The following theorem is originally due to O.Ya. Viro [21]. It is also obtained by letting $a=[d / 2]$ in the inequality of $[7, \operatorname{Remarks}(\mathrm{a})$ on $\mathrm{p}-371]$ by P. Gilmer. Let $\sigma_{d}(K)$ denotes the Tristram's signature of K [20].

Theorem 2.2. Let X be an oriented, compact 4-manifold with $\partial X=S^{3}$, and K a knot in ∂X. Suppose K bounds a surface of genus g in X representing an element ξ in $H_{2}(X, \partial X)$.
(1) If ξ is divisible by an odd prime d, then: $\left|\frac{d^{2}-1}{2 d^{2}} \xi^{2}-\sigma(X)-\sigma_{d}(K)\right| \leq \operatorname{dim} H_{2}\left(X ; \mathbb{Z}_{d}\right)+2 g$.
(2) If ξ is divisible by 2 , then: $\left|\frac{\xi^{2}}{2}-\sigma(X)-\sigma(K)\right| \leq \operatorname{dim} H_{2}\left(X ; \mathbb{Z}_{2}\right)+2 g$.

Theorem 2.3. (K. Kikuchi [11]) Let X be a closed, oriented simply connected 4 -manifold with $b_{2}^{+}(X) \leq 3$ and $b_{2}^{-}(X) \leq 3$. Let ξ be a characteristic element of $H_{2}(X ; \mathbb{Z})$. If ξ is represented by a 2 -sphere, then

$$
\xi \cdot \xi=\sigma(X)
$$

2.3. The minimal genus problem:

The genus function G is defined on $H_{2}(X, \mathbb{Z})$ as follows: For $\alpha \in H_{2}(X, \mathbb{Z})$, consider

$$
G(\alpha)=\min \{\operatorname{genus}(\Sigma) \mid \Sigma \subset X \quad \text { represents } \quad \alpha, \text { i.e., }[\Sigma]=\alpha\}
$$

where Σ ranges over closed, connected, oriented surfaces smoothly embedded in the 4 -manifold X. Note that $G(-\alpha)=G(\alpha)$ and $G(\alpha) \geq 0$ for all $\alpha \in H_{2}(X, \mathbb{Z})$ (see Gompf-Stipsicz [8]).

Theorem 2.4 (D. Ruberman) Let $\alpha=\left[S^{2} \times p t\right.$.] and $\beta=\left[p t . \times S^{2}\right]$ be the standard generators of $H_{2}\left(S^{2} \times S^{2}, \mathbb{Z}\right)$ with $\alpha \cdot \alpha=\beta \cdot \beta=0$ and $\alpha \cdot \beta=1$. If $a b \neq 0$ then

$$
G(a \alpha+b \beta)=(|a|-1)(|b|-1)
$$

Obviously $G(a \alpha)=G(b \beta)=0$.

3. Proof of Theorem 1.1

Figure 4:

To prove Theorem 1.1, we need to prove Proposition 3.1. and Proposition 3.2.
In the following, let $P(p, q, r)$ denote the 3 -stranded pretzel knot with p, q and r half-twists in its strands as in Figure $4(b)$. An example is illustrated in Figure $4(a)$ with $(p, q, r)=(5,-3,3)$. It is well-known that $P(p, q, r)$ is a knot if and only if p, q and r are odd.

Proposition 3.1. Let k be a positive knot that is not the connected sums of pretzel knots $P(p, q, r)$ (p, q and r are odd). If k is an (n, ω)-twisted knot with $\omega \neq \pm 1$, then $n>0$.

Proof. In [14], J.H. Przytycki and K. Taniyama showed that, except for connected sums of pretzel knots $P(p, q, r)$ ($p q r$ is odd), a positive knot can be deformed into $T(2,5)$ by changing some positive crossings to be negative. Since $\sigma_{d}(T(2,5))=-4$ for any prime integer $d([20$, Lemma 3.5]), then by [4, Lemma 3.4], we have $\sigma_{d}(k) \leq-4$.

Assume now that $n<0$ and $\omega \neq \pm 1$, then k bounds a disk $(\Delta, \partial \Delta) \subset\left(|n| \mathbb{C} P^{2}-\operatorname{int} B^{4}, S^{3}\right)$ such that $[\Delta]=\omega\left(\gamma_{1}+\ldots .+\gamma_{|n|}\right)$ in $H_{2}\left(|n| \mathbb{C} P^{2}-i n t B^{4}, S^{3} ; \mathbb{Z}\right)$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{|n|}$ are the standard generators of $H_{2}\left(|n| \mathbb{C} P^{2}-i n t B^{4}, S^{3} ; \mathbb{Z}\right)$ with the intersection number $\gamma_{i} \cdot \gamma_{j}=\delta_{i j}$; where $1 \leq i, j \leq n$ and $\delta_{i j}$ is the Kronecker's delta $\delta_{i j}=\left\{\begin{array}{lll}1 & \text { if } & i=j \\ 0 & \text { if } & i \neq j\end{array}\right.$

Case 1. If ω is odd, then let $d>2$ denote the smallest prime divisor of ω. Gilmer-Viro's Theorem yields that $\left||n| \omega^{2} \frac{d^{2}-1}{2 d^{2}}-|n|-\sigma_{d}(k)\right| \leq|n|$. Or equivalently, $\| n\left|\left(\frac{d^{2}-1}{2}\left(\frac{\omega}{d}\right)^{2}-1\right)-\sigma_{d}(k)\right| \leq|n|$. This would contradict that $\sigma_{d}(k) \leq-4$.

Case 2. If ω is even, then Gilmer-Viro's Theorem yields that $\left|\frac{|n| \omega^{2}}{2}-|n|-\sigma(k)\right| \leq|n|$. Or equivalently, $\left||n|\left(\frac{\omega^{2}}{2}-1\right)-\sigma(k)\right| \leq|n|$. Henceforth, the only possibilities are: $\omega=0$ and $\sigma(k)=0$ or -2 ; or $\omega= \pm 2$ and $\sigma(k)=0$. This would contradict that $\sigma(k) \leq-4$.

Proposition 3.2. Let k be an (n, ω)-twisted knot, where n and $\omega(\neq 0)$ are both even, then the following inequality holds:

$$
(|\omega|-1)\left(\left|\frac{n \omega}{2}\right|-1\right) \leq g^{*} .
$$

where g^{*} is the 4 -ball genus of k.
Proof. Assume that k is an (n, ω)-twisted knot, where n and $\omega(\neq 0)$ are both even. Then k bounds a disk $(\Delta, \partial \Delta) \subset\left(S^{2} \times S^{2}-i n t B^{4}, S^{3}\right)$ such that $\partial \Delta=k$ and

$$
[\Delta]=-\epsilon \omega \alpha+\frac{n \omega}{2} \beta \in H_{2}\left(S^{2} \times S^{2}-i n t B^{4}, S^{3} ; \mathbb{Z}\right)
$$

with $\epsilon=\operatorname{sign}(n)$ (See Lemma 3.2 in [4]. See also K. Miyazaki and A. Yasuhara [15], Fig. 4 on p-146 as well as T. Cochran and R. E. Gompf [5], Fig. 12 on p-506). Let $\left(S_{g^{*}}, \partial S_{g^{*}}\right) \subset\left(\right.$ int $\left.B^{4}, \partial B^{4} \cong S^{3}\right)$ be a compact, connected and oriented surface such that $\partial S_{g^{*}}=\bar{k}$, where $\bar{k}=-k^{*}$ is the dual knot of k i.e. the inverse of the mirror image of k [10]. Gluing Δ and $S_{g^{*}}$ along their boundaries k yields a smooth closed genus g^{*} surface $\Sigma_{g^{*}}=\Delta \bigcup_{k} S_{g^{*}}$ embedded in $S^{2} \times S^{2}$. By Ruberman's theorem we have $G\left(\left(\pm \omega, \frac{n \omega}{2}\right)=(|\omega|-1)\left(\left|\frac{n \omega}{2}\right|-1\right)\right.$ in $H_{2}\left(S^{2} \times S^{2}-i n t B^{4}, S^{3} ; \mathbb{Z}\right)$. Therefore, $(|\omega|-1)\left(\left|\frac{n \omega}{2}\right|-1\right) \leq g^{*}$.

As a corrolary of Proposition 3.2.
Corrolary 3.1. If k is an (n, ω)-twisted knot with $g^{*}=1$, where n and ω are both even, then $\omega=0$ or $(n, \omega)=(\pm 2, \pm 2)$.

Figure 5:

Figure 6:

Figure 7:

Lemma 3.1. The only pretzel knots with less than eight crossings are:

$$
7_{2}=P(5,1,1) \quad \text { and } \quad 7_{4}=P(3,1,3) .
$$

Proof. If $P(p, q, r)$ is a 3-stranded pretzel knot with less than eight crossings, then either $(p, q, r)=$ $(5,1,1)$ or $(p, q, r)=(3,1,3)$. Figure 5 shows that $7_{2}=P(5,1,1)$ and $7_{4}=P(3,1,3)$ (The projection of 7_{2} (resp. 7_{4}) is illustrated in knotinfo [2] (resp. in [18, D. Rolfsen])).

Figure 8:

Figure 9:

Proof of Theorem 1.1. As depicted in Figure 6, we can easily check that any unknotting number one knot is (-1)-twisted. Note that all knots with less than seven crossings, except $7_{1}, 7_{3}, 7_{4}$ and 7_{5}, are unknotting number one knots [10, A. Kawauchi]; and therefore they are (-1)-twisted. In the other hand, it is easy to see that the $(2,7)$-torus knot 7_{1} is $(+3,2)$-twisted, and Figure 7 shows that 7_{3} is $(+2,2)$-twisted and 7_{4} is $(-2,0)$-twisted. Therefore, it remains to prove that 7_{5} is a non-twisted knot.

Assume, for a contradiction, that 7_{5} is obtained by an (n, ω)-twisting from an unknot K along an unknot C; where n is the number of twistings and $\omega=l k(K, C)$. Note that 7_{5} is a positive knot that is not the connected sum of pretzel knots (see Lemma 3.1). By virtue of Proposition 3.1, we have $n>0$ or $\omega=\epsilon$ where $\epsilon= \pm 1$.

Case 1. If $\omega=\epsilon$, then this would contradict Suzuki-Nakanishi's theorem. Indeed, we would have

$$
\operatorname{det}\left(7_{5}\right) \equiv \pm t^{r}\left(\bmod . \quad\left(t^{\epsilon n}-1\right)\right)
$$

Letting $t=-1$ if n is even and $t=-1$ if n is odd would imply that $\operatorname{det}\left(7_{5}\right)= \pm 1$; a contradiction.
Case 2. If $n>0$, then 7_{5} bounds a disk $(\Delta, \partial \Delta) \subset\left(n \overline{\mathbb{C} P^{2}}-\operatorname{int} B^{4}, S^{3}\right)$ such that

$$
[\Delta]=\omega\left(\bar{\gamma}_{1}+\ldots .+\bar{\gamma}_{n}\right) \in H_{2}\left(n \overline{\mathbb{C} P^{2}}-\operatorname{int} B^{4}, S^{3} ; \mathbb{Z}\right)
$$

where $\bar{\gamma}_{1}, \bar{\gamma}_{2}, \ldots, \bar{\gamma}_{n}$ are the standard generators of $H_{2}\left(n \overline{\mathbb{C} P^{2}}-i n t B^{4}, S^{3} ; \mathbb{Z}\right)$ with the intersection number $\bar{\gamma}_{i} \cdot \bar{\gamma}_{j}=-\delta_{i j}$; where $\delta_{i j}$ is the Kronecker's delta.

Case 2.1. If ω is even, then Theorem 2.2 yields that $\left|-\frac{n \omega^{2}}{2}-(-n)-\sigma\left(7_{5}\right)\right| \leq n$. Or equivalently, $\left|n\left(\frac{\omega^{2}}{2}-1\right)-4\right| \leq n$. Therefore, the only remaining possibilities to preclude are $\omega= \pm 2$ and $n \geq 2$.

If $\omega= \pm 2$ and $n \geq 2$ is even, then Corrolary 3.1 yields that $(n, \omega)=(2, \pm 2)$. Therefore, 7_{5} bounds a properly embedded disk $D \subset S^{2} \times S^{2}-$ int B^{4} such that $[D]=\mp 2 \alpha_{1}+2 \beta_{1} \in H_{2}\left(S^{2} \times S^{2}-\right.$ int $\left.B^{4}, S^{3}, \mathbb{Z}\right)$ and $\partial D=7_{5}$. Figure 8 shows that $U \xrightarrow{(-2,2)} T(-2,3) \xrightarrow{(-2,2)} \overline{7}_{5}$, where $\overline{7}_{5}$ is the dual knot of 7_{5}. Then there exists a properly embedded disk $\Delta \subset S^{2} \times S^{2} \# S^{2} \times S^{2}-\operatorname{int} B^{4}$ such that $\partial \Delta=\overline{7}_{5}$; and $[\Delta]=2 \alpha_{2}+2 \beta_{2}+2 \alpha_{3}+2 \beta_{3} \in H_{2}\left(S^{2} \times S^{2} \# S^{2} \times S^{2}-\operatorname{int} B^{4}, S^{3} ; \mathbb{Z}\right)$. Therefore, the sphere

$$
[S]=[D \cup \Delta]=\mp 2 \alpha_{1}+2 \beta_{1}+2 \alpha_{2}+2 \beta_{2}+2 \alpha_{3}+2 \beta_{3} \in H_{2}\left(3 S^{2} \times S^{2}, \mathbb{Z}\right)
$$

is a characteristic class, which would contradict Kikuchi's Theorem.
If $\omega= \pm 2$ and $n \geq 2$ is odd, then by Nakanishi-Suzuki's theorem, $\Delta_{7_{5}}(-1) \equiv \Delta_{K}(-1)(\bmod .2 n)$. This implies that $17 \equiv 1(\bmod .2 n)$; or equivalently, $n= \pm 1$; a contradiction.

Case 2.2. If ω is odd, then let $d>2$ denote the smallest prime divisor of ω. Gilmer-Viro's Theorem yields that $\left|-n \omega^{2} \frac{d^{2}-1}{2 d^{2}}-(-n)-\sigma_{d}\left(7_{5}\right)\right| \leq n$. Figure 9 shows that the right-handed trefoil (resp. the (2,5)-torus) knot can be obtained from 7_{5} by changing the positive crossing c_{1} (resp. c_{2}) into negative one, then by Lemma 3.4 in [4], for any prime integer d

$$
\left\{\begin{array}{l}
\sigma_{d}(T(2,5))-2 \leq \sigma_{d}\left(7_{5}\right) \leq \sigma_{d}(T(2,5)) . \\
\sigma_{d}(T(2,3))-2 \leq \sigma_{d}\left(7_{5}\right) \leq \sigma_{d}(T(2,3)) .
\end{array}\right.
$$

Since $\sigma_{d}(T(2,3))=-2$ and $\sigma_{d}(T(2,5))=-4\left[3\right.$, Lemma 4.1]; then $\sigma_{d}\left(7_{5}\right)=-4$. This implies that the only remaining possibilities to preclude are $(n, \omega)=(1,3 \epsilon)$ or $(n, \omega)=(2,3 \epsilon)$ with $\epsilon=\operatorname{sign}(\omega)$.

If $(n, \omega)=(1,3 \epsilon)$, then 7_{5} bounds a disk $(\Delta, \partial \Delta) \subset\left(\overline{\mathbb{C} P^{2}}-\right.$ int $\left.B^{4}, S^{3}\right)$ such that $[\Delta]=3 \epsilon \bar{\gamma}$ in $H_{2}\left(\overline{\mathbb{C} P^{2}}-\operatorname{int} B^{4}, S^{3} ; \mathbb{Z}\right)$, where $\bar{\gamma}$ is the standard generator of $H_{2}\left(\overline{\mathbb{C} P^{2}}-\operatorname{int} B^{4}, S^{3} ; \mathbb{Z}\right)$ with $\bar{\gamma} \cdot \bar{\gamma}=-1$. By an argument similar to that in Case 2.1 above would contradict Kikuchi's theorem.

If $(n, \omega)=(2,3 \epsilon)$, then this would contradict Suzuki-Nakanishi's theorem. Indeed, we would have:

$$
\operatorname{det}\left(7_{5}\right) \equiv \pm t^{r}\left(\bmod .(1-t)\left(1+t^{3 \epsilon}\right)\right)
$$

If we let $t=-1$, then we would have $\operatorname{det}\left(7_{5}\right)= \pm 1$; a contradiction.

References

[1] M. Ait Nouh, Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D thesis, University of Provence, Marseille (France), (2000).
[2] J. C. Cha and C. Livingston, http://www.indiana.edu/~knotinfo/diagrams/ 7_{2}.png
[3] M. Ait Nouh, Genera and degrees of torus knots in $\mathbb{C} P^{2}$, Journal of Knot Theory and Its Ramifications, Vol. 18, No. 9 (2009), p. 1299 - 1312.
[4] M. Ait Nouh and A. Yasuhara, Torus Knots that can not be untied by twisting, Revista Math. Compl. Madrid, XIV (2001), no. 8, 423-437.
[5] T. Cochran and R. E. Gompf, Applications of Donaldson's theorems to classical knot concordance, homology 3-sphere and property P, Topology, 27 (1988), 495-512.
[6] R. H. Fox, Congruence classes of knots, Osaka Math. J. 10 (1958), 37-41.
[7] P. Gilmer: Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc., 264 (1981), 353-38.
[8] R. E. Gompf and Andras I. Stipsicz, 4-manifolds and Kirby Calculus, Graduate Studies in Mathematics, Volume 20, Amer. Math. Society. Providence, Rhode Island.
[9] C. Hayashi and K. Motegi; Only single twisting on unknots can produce composite knots, Trans. Amer. Math. Soc., vol 349, N: 12 (1997), pp. 4897-4930.
[10] A. Kawauchi, A survey on Knot Theory, Birkhausser Verlag, Basel - Boston - Berlin, (1996).
[11] K. Kikuchi, Representing positive homology classes of $\mathbb{C} P^{2} \# 2 \overline{\mathbb{C} P^{2}}$ and $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C} P^{2}}$, Proc. Amer. Math. Soc. 117 (1993), no. 3, 861-869.
[12] R. C. Kirby: The Topology of 4-manifolds, Lectures Notes in Mathematics, Springer-Verlag , 1980.
[13] Y. Mathieu, Unknotting, knotting by twists on disks and property P for knots in S^{3}, Knots 90, Proc. 1990 Osaka Conf. on Knot Theory and related topics, de Gruyter, 1992, pp. 93-102.
[14] J.H. Przytycki and K. Taniyama, Almost positive links have negative signature, preprint
[15] K. Miyazaki and A. Yasuhara, Knots that can not be obtained from a trivial knot by twisting, Comtemporary Mathematics 164 (1994) 139-150.
[16] S. Suzuki and Y. Nakanishi, On Fox's congruence classes of knots, Osaka J. Math. 24 (1980), 561-568.
[17] Y. Ohyama, Twisting and unknotting operations, Revista Math. Compl. Madrid, vol. 7 (1994), pp. 289-305.
[18] D. Rolfsen, Knots and Links, Publish or Perish, Inc. (1976).
[19] M. Teragaito, Twisting operations and composite knots, Proc. Amer. Math. Soc., vol. 123 (1995) (5), pp. 1623-1629.
[20] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66 (1969), 251-264.
[21] O. Ya Viro, Link types in codimension-2 with boundary, Uspehi Mat. Nauk, 30 (1970), 231-232, (Russian).
[22] M. Yamamoto, Lower bounds for the unknotting numbers of certain torus knots, Proc. Amer. Math. Soc., 86 (1982), 519-524.

Mohamed Ait Nouh, Department of Mathematics, University of California, Riverside 900 University Drive, Riverside, CA 93021
e-mail: maitnouh@math.ucr.edu

Anthony Barsha,
Department of Mathematics, University of California, Riverside
900 University Drive, Riverside, CA 93021
e-mail: abars001@student.ucr.edu

