
Clssification of twisting of knots with less than eight crossings

ABSTRACT

In this paper, we study twisting of knots with less than seven crossings. We prove that
all these knots are twisted except the seven crossing knot 75; depicted in Figure 3. Fur-
thermore, we show that 75 is the smallest non-twisted prime knot.

1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be as-
sumed to be oriented unless otherwise stated. A knot is a smooth embedding of S1 into the 3-sphere
S3 ∼= R

3 ∪ {±∞}. All knots are oriented.

Let K be a knot in the 3-sphere S3, and D2 a disk intersecting K in its interior. Let n be an integer.

A (− 1
n

)-Dehn surgery along C = ∂D2 changes K into a new knot Kn in S3. Let ω = lk(∂D2, L). We

say that Kn is obtained from K by (n, ω)-twisting (or simply twisting). Then we write K
(n,ω)→ Kn, or

K
(n,ω)→ K(n, ω). We say that Kn is an (n, ω)-twisted (or simply twisted) knot provided that K is the

unknot (Figure 1).

K

ω = 

n−full  twists 

−1/n − Dehn surgery along  C

C

(n, ω )−twisting

lk (K,C)        ( ω = 0)

Kn

Figure 1:

An easy example is depicted in Figure 2, where we show that the right-handed trefoil T (2, 3) is
obtained from the unknot T (2, 1) by a (+1, 2)-twisting (In this case n = +1 and ω = +2). Less
obvious examples are given in Figure 7.
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Figure 3:

Active research in twisting of knots started around 1990. One pioneer was the first author’s Ph.D
thesis advisor Y. Mathieu who asked the following questions in [13]:

Question 1.1. Are all knots twisted ? If not, what is the minimal number of twisting disks ?

To answer these questions, Y. Ohyama [17] showed that any knot can be untied by (at most) two
disks, in one hand. In the other hand, K. Miyazaki and A. Yasuhara [15] were the first to give an
infinite family of knots that are non-twisted. Furtheremore, they showed that the granny knot i.e. the
product of two right-handed trefoil knots is the smallest non-twisted knot.

In his Ph.D. thesis [1] , the first author showed that the (5, 8)-torus knot is the smallest non-twisted
torus knot. This was followed by his joint work with A. Yasuhara [4], in which an infinite family of
non-twisted torus knots was given; using some techniques deriving from old gauge theory.

Hayashi-Motegi [9], and M. Teragaito [19] found independently examples of composite twisted
knots. In addition, Hayashi-Motegi [9] and C. Goodman-Strauss [8] proved independently that, only
single twisting (i.e. | n |= 1) can yield a composite knot.

This paper is the first of a series of joint papers with a group of undergraduate and graduate
students, under the supervision of the first author; including A. Barsha, S. Inderias, T. Bui and A.
Giragosian from the University of California at Riverside. We are interested in the following general
question:

Question 1.2. Can we classify twisting of knots with less than ten crossings ?

With A. Barsha, we partially anwer this question by proving the following:

Theorem 1.1. All knots with less than seven crossings are twisted, execpt 75. Furthermore, 75 is
the smallest hyperbolic prime non-twisted knot.
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2. Preliminaries

There are several obstructions on twisting of knots deriving from congruence of knots and embed-
ding of surfaces in 4-manifolds.

2.1. Congruence classes of Knots:

The notion of congruence classes of knots (due to R. H. Fox [6]) is an equivalence relation generated
by certain twistings. A necessary condition for congruence is given by Nakanishi-Suzuki [16] in terms
of Alexander polynomials.

Definition 2.1. [16] Let n, ω be non-negative integers. We say that a knot is ω-congruent to a
knot L modulo n, ω and write K ≡ω L if there exist a sequence of knots K = K1,K2, ...,Km = L such
that Ki+1 can be obtained from Ki by an (ni, ω)-twistings, where ni ≡ 0 (mod. n)

Theorem 2.1. (Y. Nakanishi and S. Suzuki [16]) If K ≡ω L then

(1) ΔK(t) ± trΔL(t) is a multiple of (1 − t)σn(tω) for some integer r; where σn(t) =
tn − 1
t − 1

.

(2) If n or ω is even, then ΔK(t) ≡ ΔL(t) (mod. 2n).

Example 2.1. Figure 8 shows that 75 ≡2 K; where K is the unknot.

Example 2.2. If Kn is obtained from the unknot K by (n, ω)-twisting, then Kn ≡ω K. In
particular, Theorem 2.1 applies to twisted knots.

2.2. Embedding of surfaces in 4-manifolds:

In the following, b+
2 (X) (resp. b−2 (X)) is the rank of the positive (resp. negative) part of the

intersection form of an oriented, compact 4-manifold X. Let σ(X) denote the signature of X. Then
a class ξ ∈ H2(X, Z) is said to be characteristic provided that ξ.x ≡ x.x for any x ∈ H2(X, Z) where
ξ.x stands for the pairing of ξ and x, i.e. their Kronecker index and ξ2 for the self-intersection of ξ in
H2(X, Z).

The following theorem is originally due to O.Ya. Viro [21]. It is also obtained by letting a = [d/2]
in the inequality of [7, Remarks(a) on p-371] by P. Gilmer. Let σd(K) denotes the Tristram’s signature
of K [20].

Theorem 2.2. Let X be an oriented, compact 4-manifold with ∂X = S3, and K a knot in ∂X.
Suppose K bounds a surface of genus g in X representing an element ξ in H2(X,∂X).

(1) If ξ is divisible by an odd prime d, then: | d2 − 1
2d2

ξ2 − σ(X) − σd(K) |≤ dimH2(X; Zd) + 2g.

(2) If ξ is divisible by 2, then: | ξ2

2
− σ(X) − σ(K) |≤ dimH2(X; Z2) + 2g.
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Theorem 2.3. (K. Kikuchi [11]) Let X be a closed, oriented simply connected 4-manifold with
b+
2 (X) ≤ 3 and b−2 (X) ≤ 3. Let ξ be a characteristic element of H2(X; Z). If ξ is represented by a

2-sphere, then
ξ · ξ = σ(X).

2.3. The minimal genus problem:

The genus function G is defined on H2(X, Z) as follows: For α ∈ H2(X, Z), consider

G(α) = min{genus(Σ)|Σ ⊂ X represents α, i.e., [Σ] = α}

where Σ ranges over closed, connected, oriented surfaces smoothly embedded in the 4-manifold X.
Note that G(−α) = G(α) and G(α) ≥ 0 for all α ∈ H2(X, Z) (see Gompf-Stipsicz [8]).

Theorem 2.4 (D. Ruberman) Let α = [S2 × pt.] and β = [pt. × S2] be the standard generators
of H2(S2 × S2, Z) with α · α = β · β = 0 and α · β = 1. If ab �= 0 then

G(aα + bβ) = (| a | −1)(| b | −1).

Obviously G(aα) = G(bβ) = 0.

3. Proof of Theorem 1.1

p rq

P(p,q,r)

(b)

P(5,−3,3)

(a)

Figure 4:

To prove Theorem 1.1, we need to prove Proposition 3.1. and Proposition 3.2.

In the following, let P (p, q, r) denote the 3-stranded pretzel knot with p, q and r half-twists in
its strands as in Figure 4(b). An example is illustrated in Figure 4(a) with (p, q, r) = (5,−3, 3). It is
well-known that P (p, q, r) is a knot if and only if p, q and r are odd.
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Proposition 3.1. Let k be a positive knot that is not the connected sums of pretzel knots P (p, q, r)
(p, q and r are odd). If k is an (n, ω)-twisted knot with ω �= ±1, then n > 0.

Proof. In [14], J.H. Przytycki and K. Taniyama showed that, except for connected sums of pretzel
knots P (p, q, r) (pqr is odd), a positive knot can be deformed into T (2, 5) by changing some positive
crossings to be negative. Since σd(T (2, 5)) = −4 for any prime integer d ([20, Lemma 3.5]), then by
[4, Lemma 3.4] , we have σd(k) ≤ −4.

Assume now that n < 0 and ω �= ±1, then k bounds a disk (Δ, ∂Δ) ⊂ (| n | CP 2 − intB4, S3)
such that [Δ] = ω(γ1 + .... + γ|n|) in H2(| n | CP 2 − intB4, S3; Z) and γ1, γ2, ..., γ|n| are the standard
generators of H2(| n | CP 2 − intB4, S3; Z) with the intersection number γi ·γj = δij ; where 1 ≤ i, j ≤ n

and δij is the Kronecker’s delta δij =

{
1 if i = j.

0 if i �= j.

Case 1. If ω is odd, then let d > 2 denote the smallest prime divisor of ω. Gilmer-Viro’s Theorem

yields that || n | ω2 d2 − 1
2d2

− | n | −σd(k) |≤| n |. Or equivalently, || n | (
d2 − 1

2
(
ω

d
)2 − 1) − σd(k) |≤| n |.

This would contradict that σd(k) ≤ −4.

Case 2. If ω is even, then Gilmer-Viro’s Theorem yields that | | n | ω2

2
− | n | −σ(k) |≤| n |. Or

equivalently, || n | (
ω2

2
− 1) − σ(k) |≤| n |. Henceforth, the only possibilities are: ω = 0 and σ(k) = 0

or −2; or ω = ±2 and σ(k) = 0. This would contradict that σ(k) ≤ −4.

Proposition 3.2. Let k be an (n, ω)-twisted knot, where n and ω(�= 0) are both even, then the
following inequality holds:

(| ω | −1)(| nω

2
| −1) ≤ g∗.

where g∗ is the 4-ball genus of k.

Proof. Assume that k is an (n, ω)-twisted knot, where n and ω(�= 0) are both even. Then k
bounds a disk (Δ, ∂Δ) ⊂ (S2 × S2 − intB4, S3) such that ∂Δ = k and

[Δ] = −εωα +
nω

2
β ∈ H2(S2 × S2 − intB4, S3; Z)

with ε = sign(n) (See Lemma 3.2 in [4]. See also K. Miyazaki and A. Yasuhara [15], Fig. 4 on p-146
as well as T. Cochran and R. E. Gompf [5], Fig. 12 on p-506). Let (Sg∗ , ∂Sg∗) ⊂ (intB4, ∂B4 ∼= S3)
be a compact, connected and oriented surface such that ∂Sg∗ = k̄, where k̄ = −k∗ is the dual
knot of k i.e. the inverse of the mirror image of k [10]. Gluing Δ and Sg∗ along their bound-
aries k yields a smooth closed genus g∗ surface Σg∗ = Δ

⋃
k
Sg∗ embedded in S2 × S2. By Ruber-

man’s theorem we have G((±ω,
nω

2
) = (| ω | −1)(| nω

2
| −1) in H2(S2 × S2 − intB4, S3; Z). Therefore,

(| ω | −1)(| nω

2
| −1) ≤ g∗.
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As a corrolary of Proposition 3.2.

Corrolary 3.1. If k is an (n, ω)-twisted knot with g∗ = 1, where n and ω are both even, then
ω = 0 or (n, ω) = (±2,±2).

7

7

2

4

Figure 5:

−1
−1

Figure 6:

7
3

(2,0)−twisting 
74

(− 2,2)−twisting 

Figure 7:

Lemma 3.1. The only pretzel knots with less than eight crossings are:

72 = P (5, 1, 1) and 74 = P (3, 1, 3).

Proof. If P (p, q, r) is a 3-stranded pretzel knot with less than eight crossings, then either (p, q, r) =
(5, 1, 1) or (p, q, r) = (3, 1, 3). Figure 5 shows that 72 = P (5, 1, 1) and 74 = P (3, 1, 3) (The projection
of 72 (resp. 74) is illustrated in knotinfo [2] (resp. in [18, D. Rolfsen])).
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75
(−2, 2)−twisting

(−2, 2)−twisting

Figure 8:

75

c

c2

1

Figure 9:
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Proof of Theorem 1.1. As depicted in Figure 6, we can easily check that any unknotting number
one knot is (−1)-twisted. Note that all knots with less than seven crossings, except 71, 73, 74 and 75,
are unknotting number one knots [10, A. Kawauchi]; and therefore they are (−1)-twisted. In the other
hand, it is easy to see that the (2, 7)-torus knot 71 is (+3, 2)-twisted, and Figure 7 shows that 73 is
(+2, 2)-twisted and 74 is (−2, 0)-twisted. Therefore, it remains to prove that 75 is a non-twisted knot.

Assume, for a contradiction, that 75 is obtained by an (n, ω)-twisting from an unknot K along an
unknot C; where n is the number of twistings and ω = lk(K,C). Note that 75 is a positive knot that
is not the connected sum of pretzel knots (see Lemma 3.1). By virtue of Proposition 3.1, we have
n > 0 or ω = ε where ε = ±1.

Case 1. If ω = ε, then this would contradict Suzuki-Nakanishi’s theorem. Indeed, we would have

det(75) ≡ ±tr(mod. (tεn − 1)).

Letting t = −1 if n is even and t = −1 if n is odd would imply that det(75) = ±1; a contradiction.

Case 2. If n > 0, then 75 bounds a disk (Δ, ∂Δ) ⊂ (nCP 2 − intB4, S3) such that

[Δ] = ω(γ̄1 + .... + γ̄n) ∈ H2(nCP 2 − intB4, S3; Z).

where γ̄1, γ̄2, ..., γ̄n are the standard generators of H2(nCP 2 − intB4, S3; Z) with the intersection
number γ̄i · γ̄j = −δij; where δij is the Kronecker’s delta.

Case 2.1. If ω is even, then Theorem 2.2 yields that | −nω2

2
− (−n) − σ(75) |≤ n. Or equivalently,

| n(
ω2

2
− 1) − 4 |≤ n. Therefore, the only remaining possibilities to preclude are ω = ±2 and n ≥ 2.

If ω = ±2 and n ≥ 2 is even, then Corrolary 3.1 yields that (n, ω) = (2,±2). Therefore, 75 bounds a
properly embedded disk D ⊂ S2×S2−intB4 such that [D] = ∓2α1 + 2β1 ∈ H2(S2×S2−intB4, S3, Z)

and ∂D = 75. Figure 8 shows that U
(−2,2)−→ T (−2, 3)

(−2,2)−→ 7̄5, where 7̄5 is the dual knot of 75. Then
there exists a properly embedded disk Δ ⊂ S2 × S2#S2 × S2 − intB4 such that ∂Δ = 7̄5; and
[Δ] = 2α2 + 2β2 + 2α3 + 2β3 ∈ H2(S2 × S2#S2 × S2 − intB4, S3; Z). Therefore, the sphere

[S] = [D ∪ Δ] = ∓2α1 + 2β1 + 2α2 + 2β2 + 2α3 + 2β3 ∈ H2(3S2 × S2, Z).

is a characteristic class, which would contradict Kikuchi’s Theorem.

If ω = ±2 and n ≥ 2 is odd, then by Nakanishi-Suzuki’s theorem, Δ75(−1) ≡ ΔK(−1) (mod. 2n).
This implies that 17 ≡ 1 (mod. 2n); or equivalently, n = ±1; a contradiction.

Case 2.2. If ω is odd, then let d > 2 denote the smallest prime divisor of ω. Gilmer-Viro’s

Theorem yields that | −nω2 d2 − 1
2d2

− (−n) − σd(75) |≤ n. Figure 9 shows that the right-handed trefoil

(resp. the (2, 5)-torus) knot can be obtained from 75 by changing the positive crossing c1 (resp. c2)
into negative one, then by Lemma 3.4 in [4], for any prime integer d{

σd(T (2, 5)) − 2 ≤ σd(75) ≤ σd(T (2, 5)).
σd(T (2, 3)) − 2 ≤ σd(75) ≤ σd(T (2, 3)).
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Since σd(T (2, 3)) = −2 and σd(T (2, 5)) = −4 [3, Lemma 4.1]; then σd(75) = −4. This implies that
the only remaining possibilities to preclude are (n, ω) = (1, 3ε) or (n, ω) = (2, 3ε) with ε = sign(ω).

If (n, ω) = (1, 3ε), then 75 bounds a disk (Δ, ∂Δ) ⊂ (CP 2 − intB4, S3) such that [Δ] = 3εγ̄ in
H2(CP 2 − intB4, S3; Z), where γ̄ is the standard generator of H2(CP 2 − intB4, S3; Z) with γ̄ · γ̄ = −1.
By an argument similar to that in Case 2.1 above would contradict Kikuchi’s theorem.

If (n, ω) = (2, 3ε), then this would contradict Suzuki-Nakanishi’s theorem. Indeed, we would have:

det(75) ≡ ±tr(mod.(1 − t)(1 + t3ε)).

If we let t = −1, then we would have det(75) = ±1; a contradiction.
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