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ABSTRACT

In this paper, we study twisting of knots with eight crossings. We show that 815 is the

smallest eight crossing non-twisted prime knot.

1 2 1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be as-
sumed to be oriented unless otherwise stated. A knot is a smooth embedding of S1 into the 3-sphere
S3 ∼= R

3 ∪ {±∞}. All knots are oriented.

LetK be a knot in the 3-sphere S3, andD2 a disk intersectingK in its interior. Let n be an integer.

A (−
1

n
)-Dehn surgery along C = ∂D2 changes K into a new knot Kn in S3. Let ω = lk(∂D2, L). We

say that Kn is obtained from K by (n, ω)-twisting (or simply twisting). Then we write K
(n,ω)
→ Kn, or

K
(n,ω)
→ K(n, ω). We say that Kn is an (n, ω)-twisted (or simply twisted) knot provided that K is the

unknot.
An easy example is depicted in Figure 2, where we show that the right-handed trefoil T (2, 3) is

obtained from the unknot T (2, 1) by a (+1, 2)-twisting (In this case n = +1 and ω = +2). Less
obvious examples are given in Figure 7.

Active research in twisting of knots started around 1990. One pioneer was the first author’s Ph.D
thesis advisor Y. Mathieu who asked the following questions in [12]:

Question 1.1. Are all knots twisted ? If not, what is the minimal number of twisting disks ?

To answer these questions, Y. Ohyama [15] showed that any knot can be untied by (at most) two
disks, in one hand. In the other hand, K. Miyazaki and A. Yasuhara [13] were the first to give an
infinite family of knots that are non-twisted. Furtheremore, they showed that the granny knot i.e. the
product of two right-handed trefoil knots is the smallest non-twisted knot.
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In his Ph.D. thesis [1] , the first author showed that the (5, 8)-torus knot is the smallest non-twisted
torus knot. This was followed by his joint work with A. Yasuhara [5], in which an infinite family of
non-twisted torus knots was given; using some techniques deriving from old gauge theory.

We are interested in the following general question:

Question 1.2. Can we classify twisting of knots with less than ten crossings ?

In [4], we proved that all knots with less than eight crossings are twisted except 75. In this

paper, we partially answer this question by proving the following:

Theorem 1.1. All knots prior to 816are twisted, except 75 and 815 .
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2. Preliminaries

There are several obstructions on twisting of knots deriving from congruence of knots and embed-
ding of surfaces in 4-manifolds.

2.1. Congruence classes of Knots:

The notion of congruence classes of knots (due to R. H. Fox [7]) is an equivalence relation generated
by certain twistings. A necessary condition for congruence is given by Nakanishi-Suzuki [14] in terms
of Alexander polynomials.

Definition 2.1. [14] Let n, ω be non-negative integers. We say that a knot is ω-congruent to a
knot L modulo n, ω and write K ≡ω L if there exist a sequence of knots K = K1,K2, ...,Km = L such
that Ki+1 can be obtained from Ki by an (ni, ω)-twistings, where ni ≡ 0 (mod. n)

Theorem 2.1. (Y. Nakanishi and S. Suzuki [14]) If K ≡ω L then

(1) ∆K(t) ≡ ±tr∆L(t) is a multiple of (1− t)σn(t
ω) for some integer r; where σn(t) =

tn − 1

t− 1
.

(2) If n or ω is even, then ∆K(−1) ≡ ∆L(−1) (mod. 2n).

Whar figure Example 2.1. Figure 8 shows that 815 ≡
2 K; where K is the unknot.

Example 2.2. If Kn is obtained from the unknot K by (n, ω)-twisting, then Kn ≡ω K. In
particular, Theorem 2.1 applies to twisted knots.

2.2. Embedding of surfaces in 4-manifolds:

In the following, b+2 (X) (resp. b−2 (X)) is the rank of the positive (resp. negative) part of the
intersection form of an oriented, compact 4-manifold X. Let σ(X) denote the signature of X. Then
a class ξ ∈ H2(X,Z) is said to be characteristic provided that ξ.x ≡ x.x for any x ∈ H2(X,Z) where
ξ.x stands for the pairing of ξ and x, i.e. their Kronecker index and ξ2 for the self-intersection of ξ in
H2(X,Z).

The following theorem is originally due to O.Ya. Viro [18]. It is also obtained by letting a = [d/2]
in the inequality of [8, Remarks(a) on p-371] by P. Gilmer. Let σd(K) denotes the Tristram’s signature
of K [17].

Theorem 2.2. Let X be an oriented, compact 4-manifold with ∂X = S3, and K a knot in ∂X.
Suppose K bounds a surface of genus g in X representing an element ξ in H2(X, ∂X).

(1) If ξ is divisible by an odd prime d, then: |
d2 − 1

2d2
ξ2 − σ(X)− σd(K) |≤ dimH2(X;Zd) + 2g.

(2) If ξ is divisible by 2, then:
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Theorem 2.3. (P. Ozsváth and Z. Szabó [16]) Let W be a smooth, oriented four-manifold with
b+2 (W ) = b1(W ) = 0, and ∂W = S3. If Σ is any smoothly embedded surface-with-boundary in W
whose boundary lies on S3, where it is embedded as the knot K, then we have the following inequality:

τ(K) +
| [Σ] | +[Σ].[Σ]

2
≤ g(Σ).

Theorem 2.4 (K. Kikuchi [10]) Let X be a closed, oriented and smoothy 4-manifold such that:

(1) H1(X) has no 2-torsion;

(2) b±2 3.

If ξ ∈ H2(X, ∂X) is a characteristic class, then we have:

ξ2 = σ(X).

The genus function G is defined on H2(X,Z) as follows: For α ∈ H2(X,Z), consider

G(α) = min{genus(Σ)|Σ ⊂ X represents α, i.e., [Σ] = α}

Where Σ ranges over closed, connected, oriented surfaces smoothly embedded in the 4-manifold X.
Note that G(−α) = G(α) and G(α) ≥ 0 for all α ∈ H2(X,Z) (An excellent reference is Gompf-Stipsicz
[9]).

Theorem 2.5 (D. Ruberman) The minimum genus of a smooth surface representing the class
aα+ bβ in S2 × S2 is

G(aα+ bβ) = (| a | −1)(| b | −1).

when a and b are not zero. If a = 0 or b = 0, then the class can be represented by a sphere. sphere.

Proof of Theorem 1.1.

Since 815 is a positive knot, then there are two cases

Case 1 n > 0.

Case 1.1. If ω = 1, then by Theorem 2.3,

τ(815) +
n | ω | −nω2

2
≤ 0.

This would contradict that τ(815) = 2.
Case 1.2. Assume now that ω is even, then by Gilmer Viro

| −
nω2

2
− σ(815) + n |≤ n,
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or equivalently,

| n(
ω2

2
− 1)− 4 |≤ n

This yields that ω = 2 is the only posibility. By Theorem 2.1, △815(−1) ≡ △U (−1) (mod 2n), or
equivalently, 33 ≡ 1(mod 2n). Therefore, n ∈ {1, 2, 4, 8, 16}. The case n = +1 is excluded by Theorem
2.

Assume now that n ∈ {2, 8, 16}, then 815 bounds a properly embedded disk D ⊂ S2 × S2 − B4

such that ∂D = 815 and [D] = −2α1 + nβ1 ∈ H2(S
2 × S2 − B4, S3;Z). Figure 6 ?????? shows that

6̄1
(2,2)
−→ K0

(2,2)
−→ 8̄15, then there exists a properly embedded disk ∆ ⊂ S2 × S2#S2 × S2 −B4 such that

∂∆ = 815 and [∆] = −2α2 + nβ2 + 2α3 + 2β3 ∈ H2(S
2 × S2#S2 × S2, S3;Z). The sphere

[S] = [D ∪∆] = −2α1 + 2β1 + 2α2 + nβ2 + 2α3 + 2β3 ∈ H2(3S
2 × S2,Z)

is a characteristic class. This would contradict Theorem 2.4.

Now assume that n = 4, then 815 bounds a properly embedded disk D ⊂ S2 × S2 −B4 such that

[D] = −2α1 + 4β1 ∈ H2(S
2 × S2 −B4, S3;Z),

and ∂D = 815. Since the 4-ball genus of 815 is two, then consider the orientable and compact surface
(Σ2, ∂Σ2) ⊂ (B4, ∂B4 ∼= S3) such that ∂Σ2 = 8̄15. Gluing ∆ and Σ2 along their boundaries yield a
closed surface Σ = ∆ ∪ Σ2 ⊂ S2 × S2 representing −2α+ 4β ∈ H2(S

2 × S2 −B4), whose genus is also
two (see Figure 5). This would contradict Theorem 2.5 since Gmin(−2α+ 4β) = (2− 1)(4− 1) = 3.

Assume now that ω is odd, then let d > 2 denote the smallest prime divisor of ω. Theorem 2.2

yields that | −nω2d
2 − 1

2d2
− σd(815)− (−n) |≤ n.

| −n(
ω2

d2
)
d2 − 1

2
+ 4 + n |≤ n,

or equivalently,

| n[(
ω2

d2
)
d2 − 1

2
− 1]− 4 |≤ n

Then the only possibilities are ω = 3 and n = 1 or 2.

If ω = 3 and n = 1, then using a gluing argument as above, we have a characteristic sphere in
CP 2#S2 × S2 with homology class 3γ̄ − 2α+ 2β − 2α′ + 2β′. This would contradict Theorem 2.4.

If ω = 3 and n = 2, then 815 bounds a properly embedded disk D ⊂ S2 × S2 −B4 such that

[D] = −3α1 + 3β1 ∈ H2(S
2 × S2 −B4, S3;Z),

and ∂D = 815. This would contradict Theorem 2.2.
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| ξ
d2 − 1

2d2
− σd(815)− σd(S

2 × S2) |≤ n

| 2(−3)(3).
32 − 1

2(3)2
− (−4)− 0 |≤ 2

| −8 + 4 |≤ 2

| −4 |≤ 2

4 ≤ 2

Case II.n < 0

In this case, by Theorem 2.2, we can conclude that either ω = 0 or ω = 1. If n < 0 and ω = 0, then
815 bounds a properly embedded disk D ⊂ S2×S2−B4 such that [∆] = 0 ∈ H2(S

2 × S2 −B4, S3,Z)
and ∂∆ = 815.

Figure 6 ?????? shows that 6̄1
(2,2)
−→ K0

(2,2)
−→ 8̄15, then there exists a properly embedded disk D ⊂

S2×S2#S2×S2−B4 such that ∂∆ = 815 and [D] = −2α1 + 2β1 − 2α2 + 2β2 ∈ H2(S
2 × S2#S2 × S2 −B4, S3;Z).

The sphere
[S] = [D ∪∆] = −2α1 + 2β1 − 2α2 + 2β2 ∈ H2(3S

2 × S2,Z)

is a characteristic class. This would contradict Theorem 2.4. Therefore, the only remaining case

to preclude is n < 0 and ω = 1. We denote U
(−n,1)
→ 8

15
. If −n = |n| ≥ 2, then by Theorem 2.1,
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△8̄15(t) = ±tr (mod. (1− t)σn(t)), or equivalently,
△815

(t)∓ tr is a multiple of (1− tn). Since △815
(1) = △8̄15(t)− tr = (1− tn)Q(t) for some r ∈ Z,

then n is odd. Let △8̄15(t)− tr = (tn − 1)Q(t), where

Q(t) = aqt
q + aq−1t

q−1 + ...a1t+ a0.

Therefore,
△8̄15(t)− tr = aqt

n+q + aq−1t
n+q−1 + ...+ a1t

n+1 + a0t
n − aqt

q − ...− a0. Assume that r > 4, then
aq = −1 and a0 = −3. Hence, △8̄15(t) = aq−1t

n+q−1 + ...+ a1t
n+1 + a0t

n − aqt
q − ...− a1t+ 3.

Denote by aq−ℓ the first term aq−ℓ 6= 0 and aq−i = 0 for 1 ≤ i ≤ ℓ, then △8̄15(t) = aq−ℓt
n+q−ℓ+ ...+

a1t
n+1 − 3tn − aqt

q − ...− a1t+ 3. ( 0 ≤ ℓ ≤ q). If aq−ℓt
n+q−ℓ = aq−jt

q−j , then by induction we go to
the next. Therefore, without loss of generality, we can assume that the degree of △8̄15(t) = n+ q− 1,
which implies that n ≤ 4. Since n must be odd, then n = −3. The case n = −1 can be easily excluded
by Kikuchi’s theorem. To exclude n = −3, we consider the complex root of t3 − 1, which is t = ei

4π

3 .
Therefore,

△8̄15(e
i 4π

3 ) = ei
4rπ

3 . By expanding, we have:

3− 8ei
4π

3 + 11ei
8π

3 − 8ei
12π

3 + 3ei
16π

3 = ei
4rπ

3

This implies that,

3− 8cos(
4π

3
) + 11cos(

8π

3
)− 8cos(

12π

3
) + 3cos(

16π

3
) = cos(

4rπ

3
)

Or equivalently,

cos(
4rπ

3
) = −8,

a contradiction.
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