# GENERA AND DEGREES OF TORUS KNOTS IN $\mathbb{C} P^{2}$ 

MOHAMED AIT NOUH<br>Department of Mathematics, University of California at Riverside, 900 University Avenue, Riverside, CA 92521<br>maitnouh@math.ucr.edu

Accepted 13 August 2008


#### Abstract

The $\mathbb{C} P^{2}$-genus of a knot $K$ is the minimal genus over all isotopy classes of smooth, compact, connected and oriented surfaces properly embedded in $\mathbb{C} P^{2}-B^{4}$ with boundary $K$. We compute the $\mathbb{C} P^{2}$-genus and realizable degrees of $(-2, q)$-torus knots for $3 \leq q \leq$ 11 and $(2, q)$-torus knots for $3 \leq q \leq 17$. The proofs use gauge theory and twisting operations on knots.


Keywords: Smooth genus; $\mathbb{C} P^{2}$-genus; twisting; blow-up.
Mathematics Subject Classification 2000: 57M25, 57M27

## 1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be assumed to be oriented unless otherwise stated. A knot is a smooth embedding of $S^{1}$ into the 3 -sphere $S^{3} \cong \mathbb{R}^{3} \cup\{ \pm \infty\}$. All knots are oriented. Let $K$ be a knot in $\partial\left(\mathbb{C} P^{2}-B^{4}\right) \cong S^{3}$, where $B^{4}$ is an embedded open 4 -ball in $\mathbb{C} P^{2}$. The $\mathbb{C} P^{2}$-genus of a knot $K$, denoted by $g_{\mathbb{C} P^{2}}(K)$, is the minimal genus over all isotopy classes of smooth, compact, connected and oriented surfaces properly embedded in $\mathbb{C} P^{2}-B^{4}$ with boundary $K$. If $K$ bounds a properly embedded 2-disk in $\mathbb{C} P^{2}-B^{4}$, then $K$ is called a slice knot in $\mathbb{C} P^{2}$. A similar definition could be made for any 4 -manifold and that this is a generalization of the 4 -ball genus.

Recall that $\mathbb{C} P^{2}$ is the closed 4 -manifold obtained by the free action of $\mathbb{C}^{*}=$ $\mathbb{C}-\{0\}$ on $\mathbb{C}^{3}-\{(0,0,0)\}$ defined by $\lambda(x, y, z)=(\lambda x, \lambda y, \lambda z)$ where $\lambda \in \mathbb{C}^{*}$, i.e. $\mathbb{C} P^{2}=\left(\mathbb{C}^{3}-\{(0,0,0)\} / \mathbb{C}^{*}\right.$. An element of $\mathbb{C} P^{2}$ is denoted by its homogeneous coordinates $[x: y: z]$, which are defined up to the multiplication by $\lambda \in \mathbb{C}^{*}$. The fundamental class of the submanifold $H=\left\{[x: y: z] \in \mathbb{C} P^{2} \mid x=0\right\}(H \cong$ $\left.\mathbb{C} P^{1}\right)$ generates the second homology group $H_{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$ (see Gompf and Stipsicz [12]). Since $H \cong \mathbb{C} P^{1}$, then the standard generator of $H_{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$ is denoted, from
now on, by $\gamma=\left[\mathbb{C} P^{1}\right]$. Therefore, the standard generator of $H_{2}\left(\mathbb{C} P^{2}-B^{4} ; \mathbb{Z}\right)$ is $\mathbb{C} P^{1}-B^{2} \subset \mathbb{C} P^{2}-B^{4}$ with the complex orientations.

A class $\xi \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, \partial\left(\mathbb{C} P^{2}-B^{4}\right) ; \mathbb{Z}\right)$ is identified with its image by the homomorphism

$$
H_{2}\left(\mathbb{C} P^{2}-B^{4}, \partial\left(\mathbb{C} P^{2}-B^{4}\right) ; \mathbb{Z}\right) \cong H_{2}\left(\mathbb{C} P^{2}-B^{4} ; \mathbb{Z}\right) \longrightarrow H_{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)
$$

Let $d$ be an integer, then the degree- $d$ smooth slice genus of a knot $K$ in $\mathbb{C} P^{2}$ is the least integer $g$ such that $K$ is the boundary of a smooth, compact, connected and orientable genus $g$ surface $\Sigma_{g}$ properly embedded in $\mathbb{C} P^{2}-B^{4}$ with boundary $K$ in $\partial\left(\mathbb{C} P^{2}-B^{4}\right)$ and degree $d$, i.e.

$$
\left[\Sigma_{g}, \partial \Sigma_{g}\right]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, \partial\left(\mathbb{C} P^{2}-B^{4}\right) ; \mathbb{Z}\right)
$$

By the above identification, we also have: $\left[\Sigma_{g}\right]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4} ; \mathbb{Z}\right)$. If such a surface can be given explicitely, then we say that the degree $d$ is realizable. The $\mathbb{C} P^{2}$-genus of a knot $K$, denoted by $g_{\mathbb{C} P^{2}}(K)$, is the minimum over these over all d.

Question 1.1. Given a realizable degree, is the underlying surface $\Sigma_{g}$ unique, up to isotopy?

An interesting question is to find the $\mathbb{C} P^{2}$-genus and the realizable degree(s) of knots in $\mathbb{C} P^{2}$. In this paper, we compute the $\mathbb{C} P^{2}$-genus and realizable degrees of a finite collection of torus knots.

## Theorem 1.1.

(1) $g_{\mathbb{C} P^{2}}(T(-2,3))=0$ with realizable degree $d \in\{ \pm 2, \pm 3\}$.
(2) $g_{\mathbb{C} P^{2}}(T(-2, q))=0$ for $q=5,7$ and 9 with respective realizable degrees $\pm 3, \pm 4$ and $\pm 4$.
(3) $g_{\mathbb{C} P^{2}}(T(-2,11))=1$ with possible degree(s) $d \in\{ \pm 4, \pm 5\}$.

Note that for any $0<p<q, T(p, q)$ is obtained from $T(2,3)$ by adding $(p-1)(q-1)-2$ half-twisted bands. Then, there is a genus $\frac{(p-1)(q-1)-2}{2}$ cobordism between $T(2,3)$ and $T(p, q)$. We conjecture that the $\mathbb{C} P^{2}$-genus of a $(p, q)$-torus knot is equal to the genus of the cobordism between $T(2,3)$ and $T(p, q)$.
Conjecture 1.1. $g_{\mathbb{C} P^{2}}(T(p, q))=\frac{(p-1)(q-1)}{2}-1$.
We answer this conjecture by the positive for all $(2, q)$-torus knots with $3 \leq q \leq 17$.

## Theorem 1.2.

(1) $g_{\mathbb{C} P^{2}}(T(2,3))=0$ with realizable degree $d=0$.
(2) $g_{\mathbb{C} P^{2}}(T(2, q))=\frac{q-3}{2}$ for $5 \leq q \leq 17$ with respective possible degree $(s)$

- $d \in\{0, \pm 1\}$ if $q \in\{5,7,9,11\}$, and
- $d \in\{0, \pm 1, \pm 3\}$ if $q \in\{13,15,17\}$.


## 2. Twisting Operations and Sliceness in 4-Manifolds

Let $K$ be a knot in the 3 -sphere $S^{3}$, and $D^{2}$ a disk intersecting $K$ in its interior. Let $n$ be an integer. A $-\frac{1}{n}$-Dehn surgery along $C=\partial D^{2}$ changes $K$ into a new knot $K_{n}$ in $S^{3}$. Let $\omega=\operatorname{lk}\left(\partial D^{2}, L\right)$. We say that $K_{n}$ is obtained from $K$ by $(n, \omega)$-twisting (or simply twisting). Then, we write $K \xrightarrow{(n, \omega)} K_{n}$, or $K \xrightarrow{(n, \omega)} K(n, \omega)$. We say that $K_{n}$ is $n$-twisted provided that $K$ is the unknot (see Fig. 1).

An easy example is depicted in Fig. 2, where we show that the right-handed trefoil $T(2,3)$ is obtained from the unknot $T(2,1)$ by a $(+1,2)$-twisting. (In this case $n=+1$ and $\omega=+2$.)

There is a connection between twisting of knots in $S^{3}$ and dimension four: Any knot $K_{-1}$ obtained from the unknot $K$ (or more generally, a smooth slice knot in the 4 -ball) by a $(-1, \omega)$-twisting is smoothly slice in $\mathbb{C} P^{2}$ with degree $\omega$ realizable by the twisting disk $\Delta$, i.e. there exists a properly embedded smooth disk $\Delta \subset \mathbb{C} P^{2}-B^{4}$ such that $\partial \Delta=K_{-1}$ and $[\Delta]=\omega \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, S^{3}, \mathbb{Z}\right)$. For convenience of the reader, we give a sketch of a proof due to Miyazaki and Yasuhara [21]: We assume $K \cup C \subset \partial h^{0} \cong S^{3}$, where $h^{0}$ denotes the 4 -dimensional 0-handle ( $h^{0} \cong B^{4}$ ). The unknot $K$ bounds a properly embedded smooth disk $\Delta$ in $h^{0}$. Then, performing a $(-1)$-twisting is equivalent to adding a 2 -handle $h^{2}$, to $h^{0}$ along $C$ with framing +1 . It is known that the resulting 4 -manifold $h^{0} \cup h^{2}$ is $\mathbb{C} P^{2}-B^{4}$ (see Kirby [18] for example). In addition, it is easy to verify that $[\Delta]=\omega \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, S^{3}, \mathbb{Z}\right)$. More generally, we can prove, using Kirby calculus [18] and some twisting manipulations, that an $(n, \omega)$-twisted knot in $S^{3}$ bounds a properly embedded smooth disk $\Delta$ in a punctured standard four manifold of the form $n \overline{\mathbb{C} P^{2}}-B^{4}$ if $n>0$ (see Fig. 3), or $|n| \mathbb{C} P^{2}-B^{4}$ if $n<0$. The second homology of $[\Delta]$ can be computed from $n$ and $\omega$.
$\omega=l \boldsymbol{l k}(K, C) \quad(\omega=0) \quad-1 / n-$ Dehn surgery along $C$


Fig. 1.


Fig. 2.


Fig. 3.

## Examples.

(1) Song and Goda and Hayashi proved in [11] that $T(p, p+2)$ (for any $p \geq 5$ ) is obtained by a single ( +1 )-twisting along an unknot. This implies that their corresponding left-handed torus knots are smoothly slice in $\mathbb{C} P^{2}$ (see [2]). In [5], we proved that the realizable degree of $T(-p, p+2)$ in $\mathbb{C} P^{2}$ is $p+1$ (for any $p \geq 5$ ).
(2) Any unknotting number one knot is ( -1 )-twisted (see Fig. 4), and then it is smoothly slice in $\mathbb{C} P^{2}$. In particular, the double of any knot is smoothly slice in $\mathbb{C} P^{2}$.

Question 2.1. Is there a knot which is topologically but not smoothly slice in $\mathbb{C} P^{2}$ ?

The proof of Theorem 2.1 can be found in [4]:
Theorem 2.1. If a knot $K$ is obtained by a single ( $n, \omega$ )-twisting from an unknot $K_{0}$ along $C$, then its inverse $-K$ is obtained by a single $(n,-\omega)$-twisting from the unknot $-K_{0}$ along $C$.

Note that $T(-p, 4 p \pm 1)(p \geq 2)$ is obtained from the unknot $T(-1,4 p \pm 1)$ by a $(-1,2 p)$-twisting (see Fig. 5). Therefore, Theorem 2.2 is deduced from Kirby calculus.

Theorem 2.2. $T(-p, 4 p \pm 1)(p \geq 2)$ is smoothly slice in $\mathbb{C} P^{2}$ with realizable degree $d=2 p$.




Fig. 4.


Fig. 5.

We refer the reader to my Ph.D thesis [2] for more details on twisting operations on knots in $S^{3}$.

## 3. Preliminaries

Litherland gave an algorithm to compute the $x$-signatures of torus knots.
Theorem 3.1 (Litherland [20]). Let $\xi=e^{2 i \pi x}, x \in \mathbb{Q}($ with $0<x<1)$, then

$$
\left.\left.\begin{array}{rl}
\sigma_{\xi}(T(p, q))= & \sigma_{\xi^{+}}-\sigma_{\xi^{-}} \\
\sigma_{\xi^{+}}=\# & \{(i, j) \mid 1 \leq i \leq p-1 \quad \text { and } \quad 1 \leq j \leq q-1
\end{array}\right\} \begin{array}{rl} 
& \text { such that } \left.x-1<\frac{i}{p}+\frac{j}{q}<x \quad(\bmod 2)\right\} \\
\sigma_{\xi^{-}}=\# & \{(i, j) \mid 1 \leq i \leq p-1 \quad \text { and } \quad 1 \leq j \leq q-1
\end{array}\right\}
$$

( $i$ and $j$ are integers)
If $y_{i, j}=\frac{i}{p}+\frac{j}{q}$, then $x-1<y_{i, j}<x(\bmod 2)$ is equivalent to

$$
0<y_{i, j}<x \quad \text { or } \quad x+1<y_{i, j}<2 .
$$

The signature of a knot is $\sigma(k)=\sigma_{-1}(k)$ obtained by assigning $x=\frac{1}{2}$ and the Tristram $d$-signature ( $d \geq 3$ and prime) corresponds to $x=\frac{d-1}{2 d}$ which we denote by $\sigma_{d}(k)=\sigma_{e^{i \pi \frac{d-1}{d}}}($ Tristram $[24])$.

In the following, $b_{2}^{+}(X)$ (respectively, $b_{2}^{-}(X)$ ) is the rank of the positive (respectively, negative) part of the intersection form of the oriented, smooth and compact 4 -manifold $X$. Let $\sigma(X)$ denote the signature of $M^{4}$. Then a class $\xi \in H_{2}(X, \mathbb{Z})$ is said to be characteristic provided that $\xi . x \equiv x . x$ for any $x \in H_{2}(X, \mathbb{Z})$ where $\xi . x$ stands for the pairing of $\xi$ and $x$, i.e. their Kronecker index and $\xi^{2}$ for the self-intersection of $\xi$ in $H_{2}\left(M^{4}, \mathbb{Z}\right)$.

Theorem 3.2 (Gilmer and Viro [10, 25]). Let $X$ be an oriented, compact 4-manifold with $\partial X=S^{3}$, and $K$ a knot in $\partial X$. Suppose $K$ bounds a surface of genus $g$ in $X$ representing an element $\xi$ in $H_{2}(X, \partial X)$.
(1) If $\xi$ is divisible by an odd prime d, then:

$$
\left|\frac{d^{2}-1}{2 d^{2}} \xi^{2}-\sigma(X)-\sigma_{d}(K)\right| \leq \operatorname{dim} H_{2}\left(X ; \mathbb{Z}_{d}\right)+2 g
$$

(2) If $\xi$ is divisible by 2 , then:

$$
\left|\frac{\xi^{2}}{2}-\sigma(X)-\sigma(K)\right| \leq \operatorname{dim} H_{2}\left(X ; \mathbb{Z}_{2}\right)+2 g
$$

The following theorem gives a lower bound for the the genus of a characteritic class embedded in a 4-manifold:

Theorem 3.3 (Acosta [1], Fintushel [8], Yasuhara [27]). Let $X$ be a smooth closed oriented simply connected 4 -manifold with $m=\min \left(b_{2}^{+}(X), b_{2}^{-}(X)\right)$ and $M=$ $\max \left(b_{2}^{+}(X), b_{2}^{-}(X)\right)$, and assume that $m \geq 2$. If $\Sigma$ is an embedded surface in $X$ of genus $g$ so that $[\Sigma]$ is characteristic, then

Using the knot filtration on the Heegaard Floer complex $\hat{C F}$, Ozsvath and Szabo introduced in [23] an integer invariant $\tau(K)$ for knots. They showed that $|\tau(T(p, q))|=\frac{(p-1)(q-1)}{2}$ (see [23, Corollary 1.7]). In addition, they give a lower bound for the genus of a surface $\Sigma$ bounding a knot in a 4 -manifold. To state their result, let $X$ be a smooth, oriented four-manifold with $\partial X=S^{3}$ and with $b^{+}(X)=b_{1}(X)=0$. According to Donaldson's celebrated theorem [3], the intersection form of $W$ is diagonalizable. Writing a homology class $[\Sigma] \in H_{2}(X)$ as $[\Sigma]=s_{1} \cdot e_{1}+\cdots+s_{b} \cdot e_{b}$, where $e_{i}$ are an ortho-normal basis for $H_{2}(X ; Z)$, and $s_{i} \in \mathbb{Z}$, we can define the $L^{1}$ norm of $[\Sigma]$ by $|[\Sigma]|=\left|s_{1}\right|+\cdots+\left|s_{b}\right|$. Note that this is independent of the diagonalization (since the basis $e_{i}$ is uniquely characterized, up to permutations and multiplications by $\pm 1$, by the ortho-normality condition). We then have the following bounds on the genus of $[\Sigma]$ :

Theorem 3.4 (Ozsvath and Szabo [23]). Let $X$ be a smooth, oriented fourmanifold with $b_{2}^{+}(X)=b_{1}(X)=0$, and $\partial X=S^{3}$. If $\Sigma$ is any smoothly embedded
surface-with-boundary in $X$ whose boundary lies on $S^{3}$, where it is embedded as the knot $K$, then we have the following inequality:

$$
\tau(K)+\frac{|[\Sigma]|+[\Sigma] \cdot[\Sigma]}{2} \leq g(\Sigma)
$$

## 4. Proof of Statements

To prove Theorems 1.1 and 1.2, we need the following lemma.
Lemma 4.1. Let $d$ be an odd prime number. Then the $d$-signature of a $(2, q)$-torus knot $(q \geq 3)$ is given by the formula:

$$
\sigma_{d}\left((T(2, q))=-(q-1)+2\left[\frac{q}{2 d}\right]\right.
$$

where $[x]$ denotes the greatest integer less or equal to $x$.
Proof. We use Litherland's algorithm to compute $\sigma_{d}((T(2, q))$. In this case, $y_{1, j}=\frac{1}{p}+\frac{j}{q}$ and $x=\frac{d-1}{2 d}$. Therefore,

- $1+\frac{d-1}{2 d}<\frac{1}{2}+\frac{j}{q}<2$ is equivalent to $1+\left[\frac{(2 d-1) q}{2 d}\right] \leq j \leq q-1$.
- $\frac{d-1}{2 d}<\frac{1}{2}+\frac{j}{q}<1+\frac{d-1}{2 d}$ is equivalent to $1 \leq j \leq\left[\frac{(2 d-1) q}{2 d}\right]$.

Litherland's algorithm yields that $\sigma_{d}\left((T(2, q))=(q-1)-2\left[\frac{(2 d-1) q}{2 d}\right]\right.$. It is easy to check that this is equivalent to $\sigma_{d}\left((T(2, q))=-(q-1)+2\left[\frac{q}{2 d}\right]\right.$.

### 4.1. Proof of Theorem 1.1

## Proof.

(1) It is easy to check that $T(-2,3)$ is obtained by a single $(-1,2)$-twisting and also by a single $(-1,3)$-twisting from the unknot, and therefore $T(-2,3)$ is smoothly slice in $\mathbb{C} P^{2}$, or equivalentely, $g_{\mathbb{C} P^{2}}(T(-2,3))=0$. Theorems 3.2 and 2.1 yield that the only possible degrees are $d \in\{ \pm 2, \pm 3\}$; realizable by the twisting disks.
(2) Note that $T(-2,5)$ can be obtained from the unknot by a single $(-1,3)$-twisting (see Fig. 6), which proves that $T(-2,5)$ is smoothly slice in $\mathbb{C} P^{2}$ with degree $d=+3$ (see [21]). Theorems 3.2 and 2.1 yield that the only possible degrees are $d= \pm 3$; realizable by the twisting disks.
(3) Theorem 2.2 yields that $T(-2,7)$ and $T(-2,9)$ are slice with degree $d=4$. We can deduce from Theorems 3.2 and 2.1 that the only realizable degrees are $d= \pm 4$.
(4) To show that $g_{\mathbb{C} P^{2}}(T(-2,11))=1$ and $d \in\{ \pm 4, \pm 5\}$, we first notice that $T(-2,11)$ is obtained from $T(-2,9)$ by adding two half-twisted bands. By Theorem 2.2, $T(-2,9)$ is smoothly slice in $\mathbb{C} P^{2}$. Thus $g_{\mathbb{C} P^{2}}(T(-2,11)) \leq 1$.


Fig. 6.

To show that $g_{\mathbb{C} P^{2}}(T(-2,11))=1$, let $\Sigma_{g}$ be a minimal genus smooth, compact, connected and oriented surface in $\mathbb{C} P^{2}-B^{4}$ with boundary $T(-2,11)$, and assume that $\left[\Sigma_{g}\right]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, S^{3}, \mathbb{Z}\right)$.

Case 1. If $d$ is even, then by Theorem 3.2.(2), $\left\lvert\, \frac{d^{2}}{2}-\sigma(T(-2,11))-\right.$ $1 \mid \leq 1+2 g$. By A.G. Tristram $[24], \sigma(T(-2,11))=10$, then $d$ satisfies $20-4 g \leq d^{2} \leq 24+4 g$. Therefore, $g=1$ and $d= \pm 4$ are the only possibilities.

Case 2. Assume now that $d$ is odd. We can check that $T(2,11)$ is obtained from the unknot $T(-2,1)$ by a single $(6,2)$-twisting. It was proved in [21] and [7], using Kirby's calculus on the Hopf link [18], that this yields the existence of a properly embedded disk $D \subset S^{2} \times S^{2}-B^{4}$ such that $[D]=-2 \alpha+6 \beta$ and $\partial D=$ $T(2,11)$. The genus $g$ surface $\Sigma=\Sigma_{g} \cup D$ satisfies $\left[\Sigma_{g} \cup D\right]=d \gamma-2 \alpha+6 \beta \in$ $H_{2}\left(\mathbb{C} P^{2} \# S^{2} \times S^{2}, \mathbb{Z}\right)$. Note that $\Sigma$ is a characteristic class and $[\Sigma]^{2}=d^{2}-24$. Assume first that $|d| \geq 7$, so blowing up $\sum_{\tilde{\Sigma}} \subset S^{2} \times S^{2} \# \mathbb{C} P^{2}$ a number of times equal to $d^{2}-24$ gives a genus $g$ surface $\tilde{\Sigma} \subset \mathbb{C} P^{2} \# S^{2} \times S^{2} \#\left(d^{2}-24\right) \overline{\mathbb{C} P^{2}}=$ $X$ (the proper transform) with $[\tilde{\Sigma}]^{2}=0$. If $e_{i}$ denotes the homology class of the exceptional sphere in the $i^{\text {th }}$ blow-up $\left(i=1,2, \ldots, d^{2}-24\right)$, then $[\tilde{\Sigma}]=$ $d \gamma-2 \alpha+6 \beta-\sum_{i=1}^{i=d^{2}-24} e_{i} \in H_{2}(X, \mathbb{Z})$. The last inequality of Theorem 3.3 yields that $g \geq \frac{|\sigma(X)|}{8}$, which is equivalent to $g \geq \frac{d^{2}-25}{8}$; which contradicts the assumptions $g \leq 1$ and $|d| \geq 7$. Therefore, if $d$ is odd then $d \in\{ \pm 1, \pm 3, \pm 5\}$ and $g=1$.
(a) To exclude $d \in\{ \pm 1, \pm 3\}$, let $\Sigma_{1}$ be a genus-one smooth, compact, connected and oriented surface in $\mathbb{C} P^{2}-B^{4}$ with boundary $T(-2,11)$, such that $\left[\Sigma_{1}\right]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, S^{3}, \mathbb{Z}\right)$. Thus, the surface with the other orientation $\left(\bar{\Sigma}_{1}, \partial \bar{\Sigma}_{1}\right) \subset\left(\overline{\mathbb{C} P^{2}}-B^{4}, S^{3}\right)$ is a genus-one surface bounding $T(2,11)$ such that $\left[\bar{\Sigma}_{1}\right]= \pm d \bar{\gamma}$ in $H_{2}\left(\overline{\mathbb{C} P^{2}}-B^{4}, S^{3}, \mathbb{Z}\right)$. By Theorem 3.4, we have $\tau(T(2,11))+\frac{\left|\left[\bar{\Sigma}_{1}\right]\right|+\left[\bar{\Sigma}_{1}\right]^{2}}{2} \leq g\left(\bar{\Sigma}_{1}\right)$. Since $\tau(T(2,11))=5,\left|\left[\bar{\Sigma}_{1}\right]\right|=|d|$ and $\left[\bar{\Sigma}_{1}\right]^{2}=-d^{2}$, then $5+\frac{|d|-d^{2}}{2} \leq 1$, a contradiction.
(a) If $d= \pm 5$, then by Lemma 4.1, we have $\sigma_{5}(T(-2,11))=8$ and then Theorem 3.2.(2) yields that $g=1$ and $d= \pm 5$ are two possibilities.

### 4.2. Proof of Theorem 1.2

To prove Theorem 1.2, we recall the definition of band surgery:
Band surgery. Let $L$ be a $\mu$-component oriented link. Let $B_{1}, \ldots, B_{\nu}$ be mutually disjoint oriented bands in $S^{3}$ such that $B_{i} \cap L=\partial B_{i} \cap L=\alpha_{i} \cup \alpha_{i}^{\prime}$, where $\alpha_{1}, \alpha_{1}^{\prime}, \ldots, \alpha_{\nu}, \alpha_{\nu}^{\prime}$ are disjoint connected arcs. The closure of $L \cup \partial B_{1} \cup \cdots \cup \partial B_{\nu}$ is also a link $L^{\prime}$.

Definition 4.2. If $L^{\prime}$ has the orientation compatible with the orientation of $L-$ $\bigcup_{i=1, \ldots, \nu} \alpha_{i} \cup \alpha_{i}^{\prime}$ and $\bigcup_{i=1, \ldots, \nu}\left(\partial B_{i}-\alpha_{i} \cup \alpha_{i}^{\prime}\right)$, then $L^{\prime}$ is called the link obtained by the band surgery along the bands $B_{1}, \ldots, B_{\nu}$. If $\mu-\nu=1$, then this operation is called a fusion.

Example 4.3. Let $L_{p, q}=K_{1}^{1} \cup \cdots \cup K_{p}^{1} \cup K_{1}^{2} \cup \cdots \cup K_{q}^{2}$ denote the $((p, 0),(q, 0))$ cable on the Hopf link with linking number 1 (see Fig. 7). Then, $T(2,9)$ can be obtained from $L_{2,4}$ by fusion (see Fig. 8).

Example 4.4. Any $(p, 2 k p+1)$-torus $\operatorname{knot}(k>0)$ is obtained from $L_{p, k p}$ by adding $(p-1)(k+1)$ bands (see Yamamoto's construction in [26]). This construction can be generalized to any ( $p, q$ )-torus.

For convenience of the reader, we give a smooth surface that bounds $L_{p, q}$ in $T^{4}-J$ ( $J$ is a 4-ball); due to Kawamura (see [14, 15]): Consider $T^{4}=T^{2} \times T^{2}$


Fig. 7. The link $L_{p, q}$.


Fig. 8.
where $T^{2}=[0,1] \times[0,1] / \sim$ such that $(0, t) \sim(1, t)$ and $(s, 0) \sim(s, 1)$, and define $E$ and $J$ by:

$$
E=\bigcup_{k=1, \ldots, p}\left(\frac{k}{p+1}, \frac{k}{p+1}\right) \times T^{2} \cup \bigcup_{k=1, \ldots, q} T^{2} \times\left(\frac{k}{q+1}, \frac{k}{q+1}\right)
$$

and $J=\left[\frac{1}{p+2}, \frac{p+1}{p+2}\right]^{2} \times\left[\frac{1}{q+2}, \frac{q+1}{q+2}\right]^{2}$. The 4-ball $J$ contains all self-intersections of $E$ and we have:

Theorem 4.5 (Kawamura [14, 15]). $\partial(E-J)=E \cap \partial J \subset \partial J$ is the link $L_{p, q}$.
Auckly proved the following in [6].
Theorem 4.6. 0 is a basic class of $T^{4}$.
To prove Theorem 1.2, we need Proposition 4.7 and Lemma 4.8.
Proposition 4.7. If $K_{p, q}$ is a knot obtained from $L_{p, q}$ by fusion and $\Sigma_{g}$ a smooth, compact, connected and oriented surface properly embedded in $\mathbb{C} P^{2}-B^{4}$ with boundary $K_{p, q}$ in $\partial\left(\mathbb{C} P^{2}-B^{4}\right)$. Assume $\left[\Sigma_{g}\right]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, S^{3}\right)$, then

$$
2 p q-d^{2}+|d| \leq 2(p+q+g)-2
$$

Proof. By Theorem 4.5, there exists a surface $E$ and a 4-ball $J$, such that: $\partial(E-J)=L_{p, q}$ (see Fig. 9). Since $K_{p, q}$ is obtained from $L_{p, q}$ by fusion, then there exists a $(p+q+1)$-punctured sphere $\hat{F}$ in $S^{3} \times[0,1] \subset J$ such that we can identify this band surgery with $\hat{F} \cap\left(S^{3} \times\{1 / 2\}\right)$, and $\partial \hat{F}=L_{p, q} \cup K_{p, q}$ with $L_{p, q}$ lies in $S^{3} \times\{0\} \cong \partial J \times\{0\}$ and $K_{p, q}$ lies in $S^{3} \times\{1\} \cong \partial J \times\{1\}$. The 3-sphere $S^{3} \times\{1\}(\cong \partial J \times\{1\})$ bounds a 4 -ball $B^{4} \subset J$. The surface $F=(E-J) \cup \hat{F}$ is a


Fig. 9. The surface $\Sigma=(E-J) \cup \hat{F} \cup \bar{\Sigma}_{g}$.
smooth surface properly embedded in $T^{4}-B^{4}$, and with boundary $K_{p, q}$. Since $K_{p, q}$ bounds a genus $g$ surface $\Sigma_{g} \subset \mathbb{C} P^{2}-B^{4}$, then $\bar{K}_{p, q}$ bounds a properly embedded genus $g$ surface $\bar{\Sigma}_{g} \subset \overline{\mathbb{C} P^{2}}-B^{4}$ such that $\left[\bar{\Sigma}_{g}\right]= \pm d \bar{\gamma} \in H_{2}\left(\overline{\mathbb{C} P^{2}}-B^{4}, S^{3} ; \mathbb{Z}\right)$. The smooth surface $\Sigma=F \cup \bar{\Sigma}_{g}$ in $T^{4} \# \overline{\mathbb{C} P^{2}}$ satisfies $[\Sigma]^{2}=F^{2}+\left(\bar{\Sigma}_{g}\right)^{2}$. Since $F$ and $E$ are homologous, then $F^{2}=E^{2}=2 p q$ which implies that $[\Sigma]^{2}=2 p q-d^{2}$. By Theorem 4.6, 0 is a basic class for $T^{4}$, then the basic class of $T^{4} \# \overline{\mathbb{C} P^{2}}$ (the blowup of $T^{4}$ ) is $K= \pm \bar{\gamma}$ (see [9]), and therefore $|K . \Sigma|=|d|$. Since $g\left(E-B^{4}\right)=p+q$, then $g(\Sigma)=p+q+g$. The adjunction inequality proved by Kronheimer and Mrowka [22] implies that $[\Sigma]^{2}+|K . \Sigma| \leq 2 g(\Sigma)-2$. Therefore, $2 p q-d^{2}+|d| \leq 2(p+q+g)-2$.

Lemma 4.8. Let $\left(\Sigma_{g}, \partial \Sigma_{g}\right) \subset\left(\mathbb{C} P^{2}-B^{4}, S^{3}\right)$ be a genus-minimizing smooth, compact, connected and oriented surface properly embedded in $\mathbb{C} P^{2}-B^{4}$ with bondary $T(2, q)$ and let

$$
\left[\Sigma_{g}\right]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4} ; \mathbb{Z}\right)
$$

(1) If $d$ is even, then $g=\frac{q-3}{2}$ and $d=0$. Therefore Conjecture 1.1 holds in case $d$ is even.
(2) Conjecture 1.1 holds in case $d= \pm 1$.

## Proof.

(1) For any $q>0$, we can check that $T(2, q)$ is obtained from $T(2,3)$ by adding $q-3$ half-twisted bands, then there is a genus $\frac{q-3}{2}$ cobordism between $T(2,3)$ and $T(2, q)$. Since $T(2,3)$ is slice in $\mathbb{C} P^{2}$, then $g \leq \frac{q-3}{2}$. Since $d$ is even, then by Theorem 3.2(1), $\left|\frac{d^{2}}{2}-1-\sigma(T(2, q))\right| \leq 1+2 g$. By Tristram $[24], \sigma(T(2, q))=$ $-(q-1)$, and then $\frac{d^{2}}{4}+\frac{q-3}{2} \leq g$ which implies that $\frac{q-3}{2} \leq g$ and $d=0$. Therefore, Conjecture 1.1 holds in case $d$ is even.
(2) To prove that Conjecture 1.1 holds in case $d= \pm 1$, note that $T(2, q)$ is obtained from $L_{\left(2, \frac{q-1}{2}\right)}$ by fusion, and then apply Proposition 4.7.

Proof of Theorem 1.2. If $d$ is even, then by Lemma 4.8(2), $g_{\mathbb{C} P^{2}}\left(T(2, q)=\frac{q-3}{2}\right.$ for $3 \leq q \leq 17$ and the only possible degree is $d=0$; realizable by the twisting disk $\Delta$. If $d$ is odd, then by Lemma 4.8, we can assume, from now on, that $d \in \mathbb{Z}-\{ \pm 1\}$.
(1) If $q=3$ then it is not hard to check that $T(2,3)$ can be obtained by a single $(-1,0)$-twisting from the unknot. This implies that $T(2,3)$ is smoothly slice in $\mathbb{C} P^{2}$, or equivalentely $g_{\mathbb{C} P^{2}}(T(2,3))=0$. To prove that $d=0$ is the only possibility, let $(\Delta, \partial \Delta) \subset\left(\mathbb{C} P^{2}-B^{4}, S^{3}\right)$ be a smooth 2-disk such that $\partial \Delta=T(2,3)$, and assume that $[\Delta]=d \gamma \in H_{2}\left(\mathbb{C} P^{2}-B^{4}, S^{3}\right)$. It is easy to check that $T(2,1) \xrightarrow{(-2,2)} T(-2,3)$. By [21] and [7], there exists a properly embedded disk $D \subset S^{2} \times S^{2}-B^{4}$ such that $[D]=2 \alpha+2 \beta \in H_{2}\left(S^{2} \times S^{2}-B^{4}, S^{3}, \mathbb{Z}\right)$ and $\partial D=T(-2,3)$. The genus $g$ surface $\Sigma=\Sigma_{g} \cup_{T(2,3)} D$ satisfies
$[\Sigma]=d \gamma+2 \alpha+2 \beta \in H_{2}\left(\mathbb{C} P^{2} \# S^{2} \times S^{2} ; \mathbb{Z}\right)$ and then $[\Sigma]^{2}=d^{2}+8$. Blowing up $\Sigma$ a number of times equal to $d^{2}+8$ gives a genus $g$ surface $\tilde{\Sigma} \subset$ $\mathbb{C} P^{2} \# S^{2} \times S^{2} \#\left(d^{2}+8\right) \overline{\mathbb{C} P^{2}}=X$ (the proper transform) with $[\tilde{\Sigma}]^{2}=0$. The last inequqlity of Theorem 3.3 yields that $g \geq \frac{d^{2}+7}{8}$. Therefore, $T(2,3)$ is not slice, a contradiction.
(2) For $q=5$, note that $T(-2,1) \xrightarrow{(-2,2)} T(-2,5)$. By the same argument as in case $q=3$, Theorem 3.3 yields that $g \geq \frac{d^{2}+7}{8}$. This would contradict the assumptions $g \leq 2$ and $|d| \neq 1$.
(3) For $q=7$, we can also notice that $T(2,1) \xrightarrow{(-4,2)} T(-2,7)$. By a similar argument, we get a genus $g$ surface $\Sigma=\Sigma_{g} \cup_{T(2,7)} D$ such that $[\Sigma]=d \gamma+2 \alpha+4 \beta \in H_{2}\left(\mathbb{C} P^{2} \# S^{2} \times S^{2}, \mathbb{Z}\right)$. Since $[\Sigma]^{2}=d^{2}+16$, then blowing up $\Sigma$ a number of times equal to $d^{2}+16$ gives a genus $g$ surface $\tilde{\Sigma} \subset \mathbb{C} P^{2} \# S^{2} \times S^{2} \#\left(d^{2}+16\right) \overline{\mathbb{C} P^{2}}=X$ with $[\tilde{\Sigma}]^{2}=0$. The last inequality of Theorem 3.3 yields that $g \geq \frac{d^{2}+15}{8}$. This would contradict the assumptions $g \leq 2$ and $|d| \neq 1$.
(4) The case $q=9$ is similar to $q=7$ since $T(-2,1) \xrightarrow{(-4,2)} T(-2,9)$, then we can conclude from Theorem 3.3 that $g \geq \frac{d^{2}+15}{8}$. Since $g \leq 3$, then the only possibilities are $d= \pm 3$ and $g=3$; excluded by Theorem 3.2(2) and Lemma $4.1\left(\sigma_{3}(T(2,9))=-6\right)$.
(5) For $q=11$, we can check that $T(2,1) \xrightarrow{(-6,2)} T(-2,11)$. By a similar argument, we get a surface $\Sigma$ such that $[\Sigma]=d \gamma+2 \alpha+6 \beta \in H_{2}\left(\mathbb{C} P^{2} \# S^{2} \times S^{2} ; \mathbb{Z}\right)$ and $[\Sigma]^{2}=d^{2}+23$. Blowing up $\Sigma$ a number of times equal to $d^{2}+24$ gives a surface $\tilde{\Sigma} \subset \mathbb{C} P^{2} \# S^{2} \times S^{2} \#\left(d^{2}+24\right) \overline{\mathbb{C} P^{2}}=X$ such that $[\tilde{\Sigma}]=d \gamma+2 \alpha+$ $6 \beta-\sum_{i=1}^{i=d^{2}+24} e_{i} \in H_{2}(X, \mathbb{Z})$ and then $[\tilde{\Sigma}]^{2}=0$. Since $\sigma(X)=-d^{2}-23$, then Theorem 3.3 implies that $g \geq \frac{d^{2}+23}{8}$. Since $g \leq 4$, then the only possibilities are $d= \pm 3$ and $g=4$; excluded by Theorem 3.2(2) and Lemma 4.1 $\left(\sigma_{3}(T(2,11))=-8\right)$.
(6) For $q=13$, we can easily check that $T(2,-1) \xrightarrow{(-6,2)} T(-2,13)$, and Lemma 4.1 yields that $\sigma_{3}(T(2,13))=-8$. Then, the argument is similar to the case $q=11$.
(7) For $q=15$, we have $T(2,-1) \xrightarrow{(-8,2)} T(-2,15)$. Theorem 3.3 implies that $g \geq \frac{d^{2}+31}{8}$; which excludes the cases where $|d| \geq 5$. Lemma 4.1 yields that $\sigma_{3}(T(2,15))=-10$; which yields that the case $d= \pm 3$ and $g=5$ are two possibilities.
(8) For $q=17$, we have $T(2,-1) \xrightarrow{(-8,2)} T(-2,17)$. Lemma 4.1 yields that $\sigma_{3}(T(2,17))=-12$. Then the argument is similar to the case $q=15$.

## Acknowledgments

I would like to thank the referee for his valuable suggestions, and UC Riverside Mathematics Department for hospitality.

## References

[1] D. Acosta, Spin orbifolds and the minimal genus problem, Dissertation, Tulane University (1997).
[2] M. Ait Nouh, Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D thesis, University of Provence, Marseille (France) (2000).
[3] M. Ait Nouh, The minimal genus problem: Lawson's conjectures, preprint (2008).
[4] M. Ait Nouh, Characteristic invariant of knots in $S^{3}$, preprint (2008).
[5] M. Ait Nouh and A. Yasuhara, Torus Knots that can not be untied by twisting, Revista Math. Compl. Madrid, XIV(8) (2001) 423-437.
[6] D. Auckly, Surgery, Knots, and the Seiberg-Witten Equations, Lectures for the 1995 TGRCIW, preprint.
[7] T. Cochran and R. E. Gompf, Applications of Donaldson's theorems to classical knot concordance, homology 3-sphere and property P, Topology 27 (1988) 495-512.
[8] R. Fintushel, private communication with Terry Lawson.
[9] P. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed Thom conjecture, Turkish. J. Math. 19 (1995) 27-40.
[10] P. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264 (1981) 353-38.
[11] H. Goda and C. Hayashi and J. Song, Unknotted twistings of torus knots $T(p, p+2)$, preprint (2003).
[12] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics, Vol. 20 (American Mathematical Society, Providence, Rhode Island).
[13] L. H. Kauffman, On Knots, Annals of Mathematics Studies, Vol. 115 (Princeton University Press, 1987).
[14] T. Kawamura, The unknotting numbers of $10_{139}$ and $10_{152}$ are 4, Osaka J. Math. 35 (1998) 539-546.
[15] T. Kawamura, Four-dimensional invariants of links and the adjunction formula, J. Knot Theory Ramifications 11(3) (2002) 323-340.
[16] A. Kawauchi, A Survey on Knot Theory (Birkhausser Verlag, Basel, Boston, Berlin, 1996).
[17] K. Kikuchi, Representing positive homology classes of $\mathbb{C} P^{2} \# 2 \overline{\mathbb{C} P^{2}}$ and $\mathbb{C} P^{2} \# 3 \overline{\mathbb{C} P^{2}}$, Proc. Amer. Math. Soc. 117(3) (1993) 861-869.
[18] R. C. Kirby, The Topology of 4-Manifolds, Lectures Notes in Mathematics (SpringerVerlag, 1980).
[19] T. Lawson, The minimal genus problem, Expo. Math. 15 (1997) 385-431.
[20] R. A. Litherland, Signature on iterated torus knots, in Topology of Low-Dimensional Manifolds, Proceedings, Sussex 1977 (Springer-Verlag, 1979), pp. 71-84.
[21] K. Miyazaki and A. Yasuhara, Knots that can not be obtained from a trivial knot by twisting, Comtemporary Mathematics 164 (1994) 139-150.
[22] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797-808.
[23] P. Ozsvath and Z. Szabo, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615-639.
[24] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251-264.
[25] O. Ya Viro, Link types in codimension-2 with boundary, Uspehi Mat. Nauk 30 (1970) 231-232 (in Russian).
[26] M. Yamamoto, Lower bounds for the unknotting numbers of certain torus knots, Proc. Amer. Math. Soc. 86 (1982) 519-524.
[27] A. Yasuhara, Connecting lemmas and representing homology classes of simply connected 4-manifolds, Tokyo J. Math. 19 (1996) 245-261.
[28] A. Yasuhara, On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid 5 (1992) 255-276.
[29] A. Yasuhara, Private communications (2000).

