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ABSTRACT

The CP 2-genus of a knot K is the minimal genus over all isotopy classes of smooth,
compact, connected and oriented surfaces properly embedded in CP 2−B4 with boundary
K. We compute the CP 2-genus and realizable degrees of (−2, q)-torus knots for 3 ≤ q ≤

11 and (2, q)-torus knots for 3 ≤ q ≤ 17. The proofs use gauge theory and twisting
operations on knots.
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1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds

will be assumed to be oriented unless otherwise stated. A knot is a smooth embed-

ding of S1 into the 3-sphere S3 ∼= R3 ∪ {±∞}. All knots are oriented. Let K be

a knot in ∂(CP 2 − B4) ∼= S3, where B4 is an embedded open 4-ball in CP 2. The

CP 2-genus of a knot K, denoted by gCP 2(K), is the minimal genus over all isotopy

classes of smooth, compact, connected and oriented surfaces properly embedded in

CP 2−B4 with boundary K. If K bounds a properly embedded 2-disk in CP 2−B4,

then K is called a slice knot in CP 2. A similar definition could be made for any

4-manifold and that this is a generalization of the 4-ball genus.

Recall that CP 2 is the closed 4-manifold obtained by the free action of C∗ =

C − {0} on C3 − {(0, 0, 0)} defined by λ(x, y, z) = (λx, λy, λz) where λ ∈ C∗, i.e.

CP 2 = (C3 − {(0, 0, 0)}/C∗. An element of CP 2 is denoted by its homogeneous

coordinates [x : y : z], which are defined up to the multiplication by λ ∈ C∗.

The fundamental class of the submanifold H = {[x : y : z] ∈ CP 2|x = 0}(H ∼=
CP 1) generates the second homology group H2(CP 2; Z) (see Gompf and Stipsicz

[12]). Since H ∼= CP 1, then the standard generator of H2(CP 2; Z) is denoted, from
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now on, by γ = [CP 1]. Therefore, the standard generator of H2(CP 2 − B4; Z) is

CP 1 − B2 ⊂ CP 2 − B4 with the complex orientations.

A class ξ ∈ H2(CP 2 − B4, ∂(CP 2 − B4); Z) is identified with its image by the

homomorphism

H2(CP 2 − B4, ∂(CP 2 − B4); Z) ∼= H2(CP 2 − B4; Z) −→ H2(CP 2; Z).

Let d be an integer, then the degree-d smooth slice genus of a knot K in CP 2

is the least integer g such that K is the boundary of a smooth, compact, connected

and orientable genus g surface Σg properly embedded in CP 2 − B4 with boundary

K in ∂(CP 2 − B4) and degree d, i.e.

[Σg, ∂Σg] = dγ ∈ H2(CP 2 − B4, ∂(CP 2 − B4); Z).

By the above identification, we also have: [Σg] = dγ ∈ H2(CP 2 − B4; Z). If such

a surface can be given explicitely, then we say that the degree d is realizable. The

CP 2-genus of a knot K, denoted by gCP 2(K), is the minimum over these over all

d.

Question 1.1. Given a realizable degree, is the underlying surface Σg unique, up

to isotopy?

An interesting question is to find the CP 2-genus and the realizable degree(s) of

knots in CP 2. In this paper, we compute the CP 2-genus and realizable degrees of

a finite collection of torus knots.

Theorem 1.1.

(1) gCP 2(T (−2, 3)) = 0 with realizable degree d ∈ {±2,±3}.

(2) gCP 2(T (−2, q)) = 0 for q = 5, 7 and 9 with respective realizable degrees ±3,±4

and ±4.

(3) gCP 2(T (−2, 11)) = 1 with possible degree(s) d ∈ {±4,±5}.

Note that for any 0 < p < q, T (p, q) is obtained from T (2, 3) by adding

(p − 1)(q − 1) − 2 half-twisted bands. Then, there is a genus (p−1)(q−1)−2
2 cobor-

dism between T (2, 3) and T (p, q). We conjecture that the CP 2-genus of a (p, q)-torus

knot is equal to the genus of the cobordism between T (2, 3) and T (p, q).

Conjecture 1.1. gCP 2(T (p, q)) = (p−1)(q−1)
2 − 1.

We answer this conjecture by the positive for all (2, q)-torus knots with

3 ≤ q ≤ 17.

Theorem 1.2.

(1) gCP 2(T (2, 3)) = 0 with realizable degree d = 0.

(2) gCP 2(T (2, q)) = q−3
2 for 5 ≤ q ≤ 17 with respective possible degree(s )

• d ∈ {0,±1} if q ∈ {5, 7, 9, 11}, and

• d ∈ {0,±1,±3} if q ∈ {13, 15, 17}.
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2. Twisting Operations and Sliceness in 4-Manifolds

Let K be a knot in the 3-sphere S3, and D2 a disk intersecting K in its interior. Let

n be an integer. A − 1
n
-Dehn surgery along C = ∂D2 changes K into a new knot Kn

in S3. Let ω = lk(∂D2, L). We say that Kn is obtained from K by (n, ω)-twisting

(or simply twisting). Then, we write K
(n,ω)
→ Kn, or K

(n,ω)
→ K(n, ω). We say that

Kn is n-twisted provided that K is the unknot (see Fig. 1).

An easy example is depicted in Fig. 2, where we show that the right-handed

trefoil T (2, 3) is obtained from the unknot T (2, 1) by a (+1, 2)-twisting. (In this

case n = +1 and ω = +2.)

There is a connection between twisting of knots in S3 and dimension four: Any

knot K−1 obtained from the unknot K (or more generally, a smooth slice knot in the

4-ball) by a (−1, ω)-twisting is smoothly slice in CP 2 with degree ω realizable by the

twisting disk ∆, i.e. there exists a properly embedded smooth disk ∆ ⊂ CP 2 − B4

such that ∂∆ = K−1 and [∆] = ωγ ∈ H2(CP 2 − B4, S3, Z). For convenience of the

reader, we give a sketch of a proof due to Miyazaki and Yasuhara [21]: We assume

K ∪ C ⊂ ∂h0 ∼= S3, where h0 denotes the 4-dimensional 0-handle (h0 ∼= B4). The

unknot K bounds a properly embedded smooth disk ∆ in h0. Then, performing a

(−1)-twisting is equivalent to adding a 2-handle h2, to h0 along C with framing

+1. It is known that the resulting 4-manifold h0 ∪ h2 is CP 2 − B4 (see Kirby [18]

for example). In addition, it is easy to verify that [∆] = ωγ ∈ H2(CP 2 − B4, S3, Z).

More generally, we can prove, using Kirby calculus [18] and some twisting manip-

ulations, that an (n, ω)-twisted knot in S3 bounds a properly embedded smooth

disk ∆ in a punctured standard four manifold of the form nCP 2 − B4 if n > 0 (see

Fig. 3), or | n | CP 2 − B4 if n < 0. The second homology of [∆] can be computed

from n and ω.

K

ω = 

n–full  twists 

−1/n – Dehn surgery along  C

C

(n, ω)−twisting

lk (K,C) (ω = 0)

K
n

Fig. 1.

T(2,3)

C

(+1, 2)–twisting

along C

T(2, 1)

Fig. 2.



1302 M. A. Nouh

C

K

n  times

1 1 1
1

n
(n > 0)

Fig. 3.

Examples.

(1) Song and Goda and Hayashi proved in [11] that T (p, p + 2) (for any p ≥ 5)

is obtained by a single (+1)-twisting along an unknot. This implies that their

corresponding left-handed torus knots are smoothly slice in CP 2 (see [2]). In

[5], we proved that the realizable degree of T (−p, p + 2) in CP 2 is p + 1 (for

any p ≥ 5).

(2) Any unknotting number one knot is (−1)-twisted (see Fig. 4), and then it is

smoothly slice in CP 2. In particular, the double of any knot is smoothly slice

in CP 2.

Question 2.1. Is there a knot which is topologically but not smoothly slice

in CP 2?

The proof of Theorem 2.1 can be found in [4]:

Theorem 2.1. If a knot K is obtained by a single (n, ω)-twisting from an unknot

K0 along C, then its inverse −K is obtained by a single (n,−ω)-twisting from the

unknot −K0 along C.

Note that T (−p, 4p ± 1) (p ≥ 2) is obtained from the unknot T (−1, 4p ± 1)

by a (−1, 2p)-twisting (see Fig. 5). Therefore, Theorem 2.2 is deduced from Kirby

calculus.

Theorem 2.2. T (−p, 4p±1) (p ≥ 2) is smoothly slice in CP 2 with realizable degree

d = 2p.

−1
−1

Fig. 4.
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−1

−1

−1

−1 −1

T (−1 , p) 

T (−p ,  4p + 1)

Fig. 5.

We refer the reader to my Ph.D thesis [2] for more details on twisting operations

on knots in S3.

3. Preliminaries

Litherland gave an algorithm to compute the x-signatures of torus knots.

Theorem 3.1 (Litherland [20]). Let ξ = e2iπx, x ∈ Q (with 0 < x < 1), then

σξ(T (p, q)) = σξ+ − σξ−

σξ+ = #

{

(i, j)|1 ≤ i ≤ p − 1 and 1 ≤ j ≤ q − 1

such that x − 1 <
i

p
+

j

q
< x (mod 2)

}

σξ− = #

{

(i, j)|1 ≤ i ≤ p − 1 and 1 ≤ j ≤ q − 1

such that x <
i

p
+

j

q
< x + 1 (mod 2)

}

(i and j are integers )

If yi,j = i
p

+ j

q
, then x − 1 < yi,j < x (mod 2) is equivalent to

0 < yi,j < x or x + 1 < yi,j < 2.

The signature of a knot is σ(k) = σ−1(k) obtained by assigning x = 1
2 and the

Tristram d-signature (d ≥ 3 and prime) corresponds to x = d−1
2d

which we denote

by σd(k) = σ
e

iπ
d−1

d
(Tristram [24]).

In the following, b+
2 (X) (respectively, b−2 (X)) is the rank of the positive (respec-

tively, negative) part of the intersection form of the oriented, smooth and compact

4-manifold X . Let σ(X) denote the signature of M4. Then a class ξ ∈ H2(X, Z)

is said to be characteristic provided that ξ.x ≡ x.x for any x ∈ H2(X, Z) where

ξ.x stands for the pairing of ξ and x, i.e. their Kronecker index and ξ2 for the

self-intersection of ξ in H2(M
4, Z).
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Theorem 3.2 (Gilmer and Viro [10, 25]). Let X be an oriented, compact

4-manifold with ∂X = S3, and K a knot in ∂X. Suppose K bounds a surface of

genus g in X representing an element ξ in H2(X, ∂X).

(1) If ξ is divisible by an odd prime d, then :

∣

∣

∣

∣

d2 − 1

2d2
ξ2 − σ(X) − σd(K)

∣

∣

∣

∣

≤ dimH2(X ; Zd) + 2g.

(2) If ξ is divisible by 2, then :

∣

∣

∣

∣

ξ2

2
− σ(X) − σ(K)

∣

∣

∣

∣

≤ dimH2(X ; Z2) + 2g.

The following theorem gives a lower bound for the the genus of a characteritic

class embedded in a 4-manifold:

Theorem 3.3 (Acosta [1], Fintushel [8], Yasuhara [27]). Let X be a smooth

closed oriented simply connected 4-manifold with m = min(b+
2 (X), b−2 (X)) and M =

max(b+
2 (X), b−2 (X)), and assume that m ≥ 2. If Σ is an embedded surface in X of

genus g so that [Σ] is characteristic, then

g ≥







































| Σ.Σ − σ(X) |

8
+ 2 − M, if Σ.Σ ≤ σ(X) ≤ 0 or 0 ≤ σ(X) ≤ Σ.Σ,

9(| Σ.Σ − σ(X) |)

8
+ 2 − M, if σ(X) ≤ Σ.Σ ≤ 0 or ≤ Σ.Σ ≤ σ(X),

| Σ.Σ − σ(X) |

8
+ 2 − m, if σ(X) ≤ 0 ≤ Σ.Σ or Σ.Σ ≤ 0 ≤ σ(X).

Using the knot filtration on the Heegaard Floer complex ĈF , Ozsvath and

Szabo introduced in [23] an integer invariant τ(K) for knots. They showed that

| τ(T (p, q)) |= (p−1)(q−1)
2 (see [23, Corollary 1.7]). In addition, they give a lower

bound for the genus of a surface Σ bounding a knot in a 4-manifold. To state

their result, let X be a smooth, oriented four-manifold with ∂X = S3 and with

b+(X) = b1(X) = 0. According to Donaldson’s celebrated theorem [3], the inter-

section form of W is diagonalizable. Writing a homology class [Σ] ∈ H2(X) as

[Σ] = s1.e1 + · · · + sb.eb, where ei are an ortho-normal basis for H2(X ; Z), and

si ∈ Z, we can define the L1 norm of [Σ] by | [Σ] |=| s1 | + · · ·+ | sb |. Note that this

is independent of the diagonalization (since the basis ei is uniquely characterized,

up to permutations and multiplications by ±1, by the ortho-normality condition).

We then have the following bounds on the genus of [Σ]:

Theorem 3.4 (Ozsvath and Szabo [23]). Let X be a smooth, oriented four-

manifold with b+
2 (X) = b1(X) = 0, and ∂X = S3. If Σ is any smoothly embedded
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surface-with-boundary in X whose boundary lies on S3, where it is embedded as the

knot K, then we have the following inequality :

τ(K) +
| [Σ] | +[Σ].[Σ]

2
≤ g(Σ).

4. Proof of Statements

To prove Theorems 1.1 and 1.2, we need the following lemma.

Lemma 4.1. Let d be an odd prime number. Then the d-signature of a (2, q)-torus

knot (q ≥ 3) is given by the formula :

σd((T (2, q)) = −(q − 1) + 2
[ q

2d

]

,

where [x] denotes the greatest integer less or equal to x.

Proof. We use Litherland’s algorithm to compute σd((T (2, q)). In this case,

y1,j = 1
p

+ j
q

and x = d−1
2d

. Therefore,

• 1 + d−1
2d

< 1
2 + j

q
< 2 is equivalent to 1 +

[ (2d−1)q
2d

]

≤ j ≤ q − 1.

• d−1
2d

< 1
2 + j

q
< 1 + d−1

2d
is equivalent to 1 ≤ j ≤

[ (2d−1)q
2d

]

.

Litherland’s algorithm yields that σd((T (2, q)) = (q − 1)− 2
[ (2d−1)q

2d

]

. It is easy

to check that this is equivalent to σd((T (2, q)) = −(q − 1) + 2
[

q

2d

]

.

4.1. Proof of Theorem 1.1

Proof.

(1) It is easy to check that T (−2, 3) is obtained by a single (−1, 2)-twisting and also

by a single (−1, 3)-twisting from the unknot, and therefore T (−2, 3) is smoothly

slice in CP 2, or equivalentely, gCP 2(T (−2, 3)) = 0 . Theorems 3.2 and 2.1 yield

that the only possible degrees are d ∈ {±2,±3}; realizable by the twisting

disks.

(2) Note that T (−2, 5) can be obtained from the unknot by a single (−1, 3)-twisting

(see Fig. 6), which proves that T (−2, 5) is smoothly slice in CP 2 with degree

d = +3 (see [21]). Theorems 3.2 and 2.1 yield that the only possible degrees

are d = ±3; realizable by the twisting disks.

(3) Theorem 2.2 yields that T (−2, 7) and T (−2, 9) are slice with degree d = 4.

We can deduce from Theorems 3.2 and 2.1 that the only realizable degrees are

d = ±4.

(4) To show that gCP 2(T (−2, 11)) = 1 and d ∈ {±4,±5}, we first notice that

T (−2, 11) is obtained from T (−2, 9) by adding two half-twisted bands. By

Theorem 2.2, T (−2, 9) is smoothly slice in CP 2. Thus gCP 2(T (−2, 11)) ≤ 1.
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−1

T(−2,5)

Fig. 6.

To show that gCP 2(T (−2, 11)) = 1, let Σg be a minimal genus smooth, com-

pact, connected and oriented surface in CP 2 − B4 with boundary T (−2, 11),

and assume that [Σg] = dγ ∈ H2(CP 2 − B4, S3, Z).

Case 1. If d is even, then by Theorem 3.2.(2), | d2

2 − σ(T (−2, 11)) −

1 |≤ 1 + 2g. By A.G. Tristram [24], σ(T (−2, 11)) = 10, then d satisfies

20 − 4g ≤ d2 ≤ 24 + 4g. Therefore, g = 1 and d = ±4 are the only possibilities.

Case 2. Assume now that d is odd. We can check that T (2, 11) is obtained from

the unknot T (−2, 1) by a single (6, 2)-twisting. It was proved in [21] and [7],

using Kirby’s calculus on the Hopf link [18], that this yields the existence of a

properly embedded disk D ⊂ S2×S2−B4 such that [D] = −2α+6β and ∂D =

T (2, 11). The genus g surface Σ = Σg ∪ D satisfies [Σg ∪ D] = dγ − 2α + 6β ∈

H2(CP 2#S2 × S2, Z). Note that Σ is a characteristic class and [Σ]2 = d2 − 24.

Assume first that | d |≥ 7, so blowing up Σ ⊂ S2 ×S2#CP 2 a number of times

equal to d2 − 24 gives a genus g surface Σ̃ ⊂ CP 2#S2 × S2#(d2 − 24)CP 2 =

X (the proper transform) with [Σ̃]2 = 0. If ei denotes the homology class of

the exceptional sphere in the ith blow-up (i = 1, 2, . . . , d2 − 24), then [Σ̃] =

dγ − 2α + 6β −
∑i=d2−24

i=1 ei ∈ H2(X, Z). The last inequality of Theorem 3.3

yields that g ≥ |σ(X)|
8 , which is equivalent to g ≥ d2−25

8 ; which contradicts the

assumptions g ≤ 1 and | d |≥ 7. Therefore, if d is odd then d ∈ {±1,±3,±5}

and g = 1.

(a) To exclude d ∈ {±1,±3}, let Σ1 be a genus-one smooth, compact, con-

nected and oriented surface in CP 2 − B4 with boundary T (−2, 11), such

that [Σ1] = dγ ∈ H2(CP 2 − B4, S3, Z). Thus, the surface with the other

orientation (Σ1, ∂Σ1) ⊂ (CP 2 − B4, S3) is a genus-one surface bounding

T (2, 11) such that [Σ1] = ±dγ in H2(CP 2−B4, S3, Z). By Theorem 3.4, we

have τ(T (2, 11)) + |[Σ1]|+[Σ1]
2

2 ≤ g(Σ1). Since τ(T (2, 11)) = 5, | [Σ1] |=| d |

and [Σ1]
2 = −d2, then 5 + |d|−d2

2 ≤ 1, a contradiction.

(a) If d = ±5, then by Lemma 4.1, we have σ5(T (−2, 11)) = 8 and then

Theorem 3.2.(2) yields that g = 1 and d = ±5 are two possibilities.



Genera and Degrees of Torus Knots in CP 2 1307

4.2. Proof of Theorem 1.2

To prove Theorem 1.2, we recall the definition of band surgery:

Band surgery. Let L be a µ-component oriented link. Let B1, . . . , Bν be mutu-

ally disjoint oriented bands in S3 such that Bi ∩ L = ∂Bi ∩ L = αi ∪ α′
i, where

α1, α
′
1, . . . , αν , α′

ν are disjoint connected arcs. The closure of L∪ ∂B1 ∪ · · · ∪ ∂Bν is

also a link L′.

Definition 4.2. If L′ has the orientation compatible with the orientation of L −
⋃

i=1,...,ν αi ∪ α′
i and

⋃

i=1,...,ν(∂Bi − αi ∪ α′
i), then L′ is called the link obtained

by the band surgery along the bands B1, . . . , Bν . If µ − ν = 1, then this operation

is called a fusion.

Example 4.3. Let Lp,q = K1
1 ∪ · · · ∪K1

p ∪K2
1 ∪ · · · ∪K2

q denote the ((p, 0), (q, 0))-

cable on the Hopf link with linking number 1 (see Fig. 7). Then, T (2, 9) can be

obtained from L2,4 by fusion (see Fig. 8).

Example 4.4. Any (p, 2kp+1)-torus knot (k > 0) is obtained from Lp,kp by adding

(p − 1)(k + 1) bands (see Yamamoto’s construction in [26]). This construction can

be generalized to any (p, q)-torus.

For convenience of the reader, we give a smooth surface that bounds Lp,q in

T 4 − J ( J is a 4-ball); due to Kawamura (see [14, 15]): Consider T 4 = T 2 × T 2

K K K

K

K

K
1

2

1 2

p

q

1

1

1

2 2 2

Fig. 7. The link Lp,q.

b

b

b

b

1

2

3

4

b
5

Fig. 8.
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where T 2 = [0, 1] × [0, 1]/∼ such that (0, t) ∼ (1, t) and (s, 0) ∼ (s, 1), and define

E and J by:

E =
⋃

k=1,...,p

(

k

p + 1
,

k

p + 1

)

× T 2 ∪
⋃

k=1,...,q

T 2 ×

(

k

q + 1
,

k

q + 1

)

and J = [ 1
p+2 , p+1

p+2 ]2 × [ 1
q+2 , q+1

q+2 ]2. The 4-ball J contains all self-intersections of E

and we have:

Theorem 4.5 (Kawamura [14, 15]). ∂(E − J) = E ∩ ∂J ⊂ ∂J is the link Lp,q.

Auckly proved the following in [6].

Theorem 4.6. 0 is a basic class of T 4.

To prove Theorem 1.2, we need Proposition 4.7 and Lemma 4.8.

Proposition 4.7. If Kp,q is a knot obtained from Lp,q by fusion and Σg a smooth,

compact, connected and oriented surface properly embedded in CP 2 − B4 with

boundary Kp,q in ∂(CP 2 − B4). Assume [Σg] = dγ ∈ H2(CP 2 − B4, S3), then

2pq − d2+ | d |≤ 2(p + q + g) − 2.

Proof. By Theorem 4.5, there exists a surface E and a 4-ball J , such that:

∂(E − J) = Lp,q (see Fig. 9). Since Kp,q is obtained from Lp,q by fusion, then

there exists a (p + q + 1)-punctured sphere F̂ in S3 × [0, 1] ⊂ J such that we can

identify this band surgery with F̂ ∩ (S3 × {1/2}), and ∂F̂ = Lp,q ∪ Kp,q with Lp,q

lies in S3 × {0} ∼= ∂J × {0} and Kp,q lies in S3 × {1} ∼= ∂J × {1}. The 3-sphere

S3 × {1}(∼= ∂J × {1}) bounds a 4-ball B4 ⊂ J . The surface F = (E − J) ∪ F̂ is a

E  J

L

K
J

p,q

p,q

K
p,q

F

B
4

Σg

Fig. 9. The surface Σ = (E − J) ∪ F̂ ∪ Σg.
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smooth surface properly embedded in T 4−B4, and with boundary Kp,q. Since Kp,q

bounds a genus g surface Σg ⊂ CP 2 −B4, then Kp,q bounds a properly embedded

genus g surface Σg ⊂ CP 2 −B4 such that [Σg] = ±dγ ∈ H2(CP 2 −B4, S3; Z). The

smooth surface Σ = F ∪ Σg in T 4#CP 2 satisfies [Σ]2 = F 2 + (Σg)
2. Since F and

E are homologous, then F 2 = E2 = 2pq which implies that [Σ]2 = 2pq − d2. By

Theorem 4.6, 0 is a basic class for T 4, then the basic class of T 4#CP 2 (the blowup

of T 4) is K = ±γ (see [9]), and therefore | K.Σ |=| d |. Since g(E−B4) = p+q, then

g(Σ) = p+q+g. The adjunction inequality proved by Kronheimer and Mrowka [22]

implies that [Σ]2+ | K.Σ |≤ 2g(Σ) − 2. Therefore, 2pq− d2+ | d |≤ 2(p+ q + g)− 2.

Lemma 4.8. Let (Σg, ∂Σg) ⊂ (CP 2 − B4, S3) be a genus-minimizing smooth,

compact, connected and oriented surface properly embedded in CP 2 − B4 with

bondary T (2, q) and let

[Σg] = dγ ∈ H2(CP 2 − B4; Z).

(1) If d is even, then g = q−3
2 and d = 0. Therefore Conjecture 1.1 holds in case d

is even.

(2) Conjecture 1.1 holds in case d = ±1.

Proof.

(1) For any q > 0, we can check that T (2, q) is obtained from T (2, 3) by adding

q − 3 half-twisted bands, then there is a genus q−3
2 cobordism between T (2, 3)

and T (2, q). Since T (2, 3) is slice in CP 2, then g ≤ q−3
2 . Since d is even, then by

Theorem 3.2(1), |d
2

2 − 1 − σ(T (2, q))| ≤ 1 + 2g. By Tristram [24], σ(T (2, q)) =

−(q − 1), and then d2

4 + q−3
2 ≤ g which implies that q−3

2 ≤ g and d = 0.

Therefore, Conjecture 1.1 holds in case d is even.

(2) To prove that Conjecture 1.1 holds in case d = ±1, note that T (2, q) is obtained

from L(2, q−1

2
) by fusion, and then apply Proposition 4.7.

Proof of Theorem 1.2. If d is even, then by Lemma 4.8(2), gCP 2(T (2, q) = q−3
2

for 3 ≤ q ≤ 17 and the only possible degree is d = 0; realizable by the twisting disk

∆. If d is odd, then by Lemma 4.8, we can assume, from now on, that d ∈ Z−{±1}.

(1) If q = 3 then it is not hard to check that T (2, 3) can be obtained by a sin-

gle (−1, 0)-twisting from the unknot. This implies that T (2, 3) is smoothly

slice in CP 2, or equivalentely gCP 2(T (2, 3)) = 0. To prove that d = 0 is the

only possibility, let (∆, ∂∆) ⊂ (CP 2 − B4, S3) be a smooth 2-disk such that

∂∆ = T (2, 3), and assume that [∆] = dγ ∈ H2(CP 2 − B4, S3). It is easy to

check that T (2, 1)
(−2,2)
−→ T (−2, 3). By [21] and [7], there exists a properly embed-

ded disk D ⊂ S2×S2−B4 such that [D] = 2α + 2β ∈ H2(S
2 × S2 − B4, S3, Z)

and ∂D = T (−2, 3). The genus g surface Σ = Σg ∪T (2,3) D satisfies
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[Σ] = dγ + 2α + 2β ∈ H2(CP 2#S2 × S2; Z) and then [Σ]2 = d2 + 8. Blowing

up Σ a number of times equal to d2 + 8 gives a genus g surface Σ̃ ⊂

CP 2#S2 × S2#(d2 + 8)CP 2 = X (the proper transform) with [Σ̃]2 = 0. The

last inequqlity of Theorem 3.3 yields that g ≥ d2+7
8 . Therefore, T (2, 3) is not

slice, a contradiction.

(2) For q = 5, note that T (−2, 1)
(−2,2)
−→ T (−2, 5). By the same argument as in case

q = 3, Theorem 3.3 yields that g ≥ d2+7
8 . This would contradict the assumptions

g ≤ 2 and | d |�= 1.

(3) For q = 7, we can also notice that T (2, 1)
(−4,2)
−→ T (−2, 7). By a simi-

lar argument, we get a genus g surface Σ = Σg ∪T (2,7) D such that

[Σ] = dγ + 2α + 4β ∈ H2(CP 2#S2 × S2, Z). Since [Σ]2 = d2 + 16, then blow-

ing up Σ a number of times equal to d2 + 16 gives a genus g surface

Σ̃ ⊂ CP 2#S2 × S2#(d2 + 16)CP 2 = X with [Σ̃]2 = 0. The last inequality of

Theorem 3.3 yields that g ≥ d2+15
8 . This would contradict the assumptions

g ≤ 2 and | d |�= 1.

(4) The case q = 9 is similar to q = 7 since T (−2, 1)
(−4,2)
−→ T (−2, 9), then we

can conclude from Theorem 3.3 that g ≥ d2+15
8 . Since g ≤ 3, then the

only possibilities are d = ±3 and g = 3; excluded by Theorem 3.2(2) and

Lemma 4.1 (σ3(T (2, 9)) = −6).

(5) For q = 11, we can check that T (2, 1)
(−6,2)
−→ T (−2, 11). By a similar argument,

we get a surface Σ such that [Σ] = dγ + 2α + 6β ∈ H2(CP 2#S2 × S2; Z) and

[Σ]2 = d2 + 23. Blowing up Σ a number of times equal to d2 + 24 gives a

surface Σ̃ ⊂ CP 2#S2 × S2#(d2 + 24)CP 2 = X such that [Σ̃] = dγ + 2α +

6β −
∑i=d2+24

i=1 ei ∈ H2(X, Z) and then [Σ̃]2 = 0. Since σ(X) = −d2 − 23,

then Theorem 3.3 implies that g ≥ d2+23
8 . Since g ≤ 4, then the only possi-

bilities are d = ±3 and g = 4; excluded by Theorem 3.2(2) and Lemma 4.1

(σ3(T (2, 11)) = −8).

(6) For q = 13, we can easily check that T (2,−1)
(−6,2)
−→ T (−2, 13), and Lemma 4.1

yields that σ3(T (2, 13)) = −8. Then, the argument is similar to the case q = 11.

(7) For q = 15, we have T (2,−1)
(−8,2)
−→ T (−2, 15). Theorem 3.3 implies that

g ≥ d2+31
8 ; which excludes the cases where | d |≥ 5. Lemma 4.1 yields that

σ3(T (2, 15)) = −10; which yields that the case d = ±3 and g = 5 are two

possibilities.

(8) For q = 17, we have T (2,−1)
(−8,2)
−→ T (−2, 17). Lemma 4.1 yields that

σ3(T (2, 17)) = −12. Then the argument is similar to the case q = 15.
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