

GENERA AND DEGREES OF TORUS KNOTS IN $\mathbb{C}P^2$

MOHAMED AIT NOUH

Department of Mathematics, University of California at Riverside, 900 University Avenue, Riverside, CA 92521 maitnouh@math.ucr.edu

Accepted 13 August 2008

ABSTRACT

The $\mathbb{C}P^2$ -genus of a knot K is the minimal genus over all isotopy classes of smooth, compact, connected and oriented surfaces properly embedded in $\mathbb{C}P^2-B^4$ with boundary K. We compute the $\mathbb{C}P^2$ -genus and realizable degrees of (-2, q)-torus knots for $3 \leq q \leq 11$ and (2, q)-torus knots for $3 \leq q \leq 17$. The proofs use gauge theory and twisting operations on knots.

Keywords: Smooth genus; $\mathbb{C}P^2$ -genus; twisting; blow-up.

Mathematics Subject Classification 2000: 57M25, 57M27

1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be assumed to be oriented unless otherwise stated. A knot is a smooth embedding of S^1 into the 3-sphere $S^3 \cong \mathbb{R}^3 \cup \{\pm \infty\}$. All knots are oriented. Let K be a knot in $\partial(\mathbb{C}P^2 - B^4) \cong S^3$, where B^4 is an embedded open 4-ball in $\mathbb{C}P^2$. The $\mathbb{C}P^2$ -genus of a knot K, denoted by $g_{\mathbb{C}P^2}(K)$, is the minimal genus over all isotopy classes of smooth, compact, connected and oriented surfaces properly embedded in $\mathbb{C}P^2 - B^4$ with boundary K. If K bounds a properly embedded 2-disk in $\mathbb{C}P^2 - B^4$, then K is called a slice knot in $\mathbb{C}P^2$. A similar definition could be made for any 4-manifold and that this is a generalization of the 4-ball genus.

Recall that $\mathbb{C}P^2$ is the closed 4-manifold obtained by the free action of $\mathbb{C}^* = \mathbb{C} - \{0\}$ on $\mathbb{C}^3 - \{(0,0,0)\}$ defined by $\lambda(x,y,z) = (\lambda x, \lambda y, \lambda z)$ where $\lambda \in \mathbb{C}^*$, i.e. $\mathbb{C}P^2 = (\mathbb{C}^3 - \{(0,0,0)\}/\mathbb{C}^*$. An element of $\mathbb{C}P^2$ is denoted by its homogeneous coordinates [x : y : z], which are defined up to the multiplication by $\lambda \in \mathbb{C}^*$. The fundamental class of the submanifold $H = \{[x : y : z] \in \mathbb{C}P^2 | x = 0\}(H \cong \mathbb{C}P^1)$ generates the second homology group $H_2(\mathbb{C}P^2;\mathbb{Z})$ (see Gompf and Stipsicz [12]). Since $H \cong \mathbb{C}P^1$, then the standard generator of $H_2(\mathbb{C}P^2;\mathbb{Z})$ is denoted, from

now on, by $\gamma = [\mathbb{C}P^1]$. Therefore, the standard generator of $H_2(\mathbb{C}P^2 - B^4; \mathbb{Z})$ is $\mathbb{C}P^1 - B^2 \subset \mathbb{C}P^2 - B^4$ with the complex orientations.

A class $\xi \in H_2(\mathbb{C}P^2 - B^4, \partial(\mathbb{C}P^2 - B^4); \mathbb{Z})$ is identified with its image by the homomorphism

$$H_2(\mathbb{C}P^2 - B^4, \partial(\mathbb{C}P^2 - B^4); \mathbb{Z}) \cong H_2(\mathbb{C}P^2 - B^4; \mathbb{Z}) \longrightarrow H_2(\mathbb{C}P^2; \mathbb{Z}).$$

Let d be an integer, then the degree-d smooth slice genus of a knot K in $\mathbb{C}P^2$ is the least integer g such that K is the boundary of a smooth, compact, connected and orientable genus g surface Σ_g properly embedded in $\mathbb{C}P^2 - B^4$ with boundary K in $\partial(\mathbb{C}P^2 - B^4)$ and degree d, i.e.

$$[\Sigma_g, \partial \Sigma_g] = d\gamma \in H_2(\mathbb{C}P^2 - B^4, \partial(\mathbb{C}P^2 - B^4); \mathbb{Z}).$$

By the above identification, we also have: $[\Sigma_g] = d\gamma \in H_2(\mathbb{C}P^2 - B^4; \mathbb{Z})$. If such a surface can be given explicitly, then we say that the degree d is *realizable*. The $\mathbb{C}P^2$ -genus of a knot K, denoted by $g_{\mathbb{C}P^2}(K)$, is the minimum over these over all d.

Question 1.1. Given a realizable degree, is the underlying surface Σ_g unique, up to isotopy?

An interesting question is to find the $\mathbb{C}P^2$ -genus and the realizable degree(s) of knots in $\mathbb{C}P^2$. In this paper, we compute the $\mathbb{C}P^2$ -genus and realizable degrees of a finite collection of torus knots.

Theorem 1.1.

- (1) $g_{\mathbb{C}P^2}(T(-2,3)) = 0$ with realizable degree $d \in \{\pm 2, \pm 3\}$.
- (2) $g_{\mathbb{C}P^2}(T(-2,q)) = 0$ for q = 5,7 and 9 with respective realizable degrees $\pm 3, \pm 4$ and ± 4 .
- (3) $g_{\mathbb{C}P^2}(T(-2,11)) = 1$ with possible degree(s) $d \in \{\pm 4, \pm 5\}.$

Note that for any 0 , <math>T(p,q) is obtained from T(2,3) by adding (p-1)(q-1)-2 half-twisted bands. Then, there is a genus $\frac{(p-1)(q-1)-2}{2}$ cobordism between T(2,3) and T(p,q). We conjecture that the $\mathbb{C}P^2$ -genus of a (p,q)-torus knot is equal to the genus of the cobordism between T(2,3) and T(p,q).

Conjecture 1.1. $g_{\mathbb{C}P^2}(T(p,q)) = \frac{(p-1)(q-1)}{2} - 1.$

We answer this conjecture by the positive for all (2,q)-torus knots with $3 \le q \le 17$.

Theorem 1.2.

- (1) $g_{\mathbb{C}P^2}(T(2,3)) = 0$ with realizable degree d = 0.
- (2) $g_{\mathbb{C}P^2}(T(2,q)) = \frac{q-3}{2}$ for $5 \le q \le 17$ with respective possible degree(s)
 - $d \in \{0, \pm 1\}$ if $q \in \{5, 7, 9, 11\}$, and
 - $d \in \{0, \pm 1, \pm 3\}$ if $q \in \{13, 15, 17\}$.

2. Twisting Operations and Sliceness in 4-Manifolds

Let K be a knot in the 3-sphere S^3 , and D^2 a disk intersecting K in its interior. Let n be an integer. A $-\frac{1}{n}$ -Dehn surgery along $C = \partial D^2$ changes K into a new knot K_n in S^3 . Let $\omega = \text{lk}(\partial D^2, L)$. We say that K_n is obtained from K by (n, ω) -twisting (or simply twisting). Then, we write $K \xrightarrow{(n,\omega)} K_n$, or $K \xrightarrow{(n,\omega)} K(n,\omega)$. We say that K_n is n-twisted provided that K is the unknot (see Fig. 1).

An easy example is depicted in Fig. 2, where we show that the right-handed trefoil T(2,3) is obtained from the unknot T(2,1) by a (+1,2)-twisting. (In this case n = +1 and $\omega = +2$.)

There is a connection between twisting of knots in S^3 and dimension four: Any knot K_{-1} obtained from the unknot K (or more generally, a smooth slice knot in the 4-ball) by a $(-1, \omega)$ -twisting is smoothly slice in $\mathbb{C}P^2$ with degree ω realizable by the twisting disk Δ , i.e. there exists a properly embedded smooth disk $\Delta \subset \mathbb{C}P^2 - B^4$ such that $\partial \Delta = K_{-1}$ and $[\Delta] = \omega \gamma \in H_2(\mathbb{C}P^2 - B^4, S^3, \mathbb{Z})$. For convenience of the reader, we give a sketch of a proof due to Miyazaki and Yasuhara [21]: We assume $K \cup C \subset \partial h^0 \cong S^3$, where h^0 denotes the 4-dimensional 0-handle $(h^0 \cong B^4)$. The unknot K bounds a properly embedded smooth disk Δ in h^0 . Then, performing a (-1)-twisting is equivalent to adding a 2-handle h^2 , to h^0 along C with framing +1. It is known that the resulting 4-manifold $h^0 \cup h^2$ is $\mathbb{C}P^2 - B^4$ (see Kirby [18] for example). In addition, it is easy to verify that $[\Delta] = \omega \gamma \in H_2(\mathbb{C}P^2 - B^4, S^3, \mathbb{Z}).$ More generally, we can prove, using Kirby calculus [18] and some twisting manipulations, that an (n, ω) -twisted knot in S^3 bounds a properly embedded smooth disk Δ in a punctured standard four manifold of the form $n\overline{\mathbb{C}P^2} - B^4$ if n > 0 (see Fig. 3), or $|n| \mathbb{C}P^2 - B^4$ if n < 0. The second homology of $[\Delta]$ can be computed from n and ω .

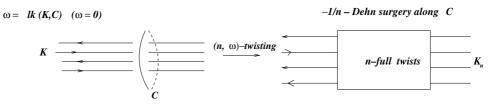
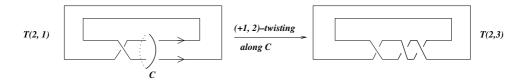


Fig. 1.



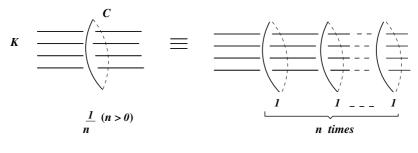


Fig. 3.

Examples.

- Song and Goda and Hayashi proved in [11] that T(p, p + 2) (for any p ≥ 5) is obtained by a single (+1)-twisting along an unknot. This implies that their corresponding left-handed torus knots are smoothly slice in CP² (see [2]). In [5], we proved that the realizable degree of T(-p, p + 2) in CP² is p + 1 (for any p ≥ 5).
- (2) Any unknotting number one knot is (−1)-twisted (see Fig. 4), and then it is smoothly slice in CP². In particular, the double of any knot is smoothly slice in CP².

Question 2.1. Is there a knot which is topologically but not smoothly slice in $\mathbb{C}P^2$?

The proof of Theorem 2.1 can be found in [4]:

Theorem 2.1. If a knot K is obtained by a single (n, ω) -twisting from an unknot K_0 along C, then its inverse -K is obtained by a single $(n, -\omega)$ -twisting from the unknot $-K_0$ along C.

Note that $T(-p, 4p \pm 1)$ $(p \ge 2)$ is obtained from the unknot $T(-1, 4p \pm 1)$ by a (-1, 2p)-twisting (see Fig. 5). Therefore, Theorem 2.2 is deduced from Kirby calculus.

Theorem 2.2. $T(-p, 4p \pm 1)$ $(p \ge 2)$ is smoothly slice in $\mathbb{C}P^2$ with realizable degree d = 2p.

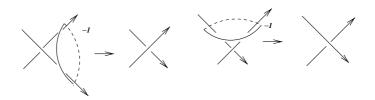


Fig. 4.

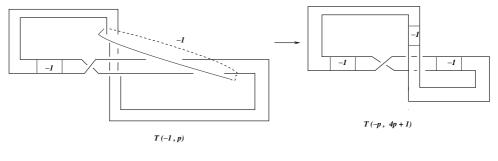


Fig. 5.

We refer the reader to my Ph.D thesis [2] for more details on twisting operations on knots in S^3 .

3. Preliminaries

Litherland gave an algorithm to compute the x-signatures of torus knots.

Theorem 3.1 (Litherland [20]). Let $\xi = e^{2i\pi x}$, $x \in \mathbb{Q}$ (with 0 < x < 1), then

$$\begin{aligned} \sigma_{\xi}(T(p,q)) &= \sigma_{\xi^{+}} - \sigma_{\xi^{-}} \\ \sigma_{\xi^{+}} &= \# \left\{ (i,j) | 1 \le i \le p-1 \quad and \quad 1 \le j \le q-1 \\ such \ that \ x - 1 < \frac{i}{p} + \frac{j}{q} < x \pmod{2} \right\} \\ \sigma_{\xi^{-}} &= \# \left\{ (i,j) | 1 \le i \le p-1 \quad and \quad 1 \le j \le q-1 \\ such \ that \ x < \frac{i}{p} + \frac{j}{q} < x+1 \pmod{2} \right\} \end{aligned}$$

(i and j are integers)

If
$$y_{i,j} = \frac{i}{p} + \frac{j}{q}$$
, then $x - 1 < y_{i,j} < x \pmod{2}$ is equivalent to
 $0 < y_{i,j} < x \text{ or } x + 1 < y_{i,j} < 2.$

The signature of a knot is $\sigma(k) = \sigma_{-1}(k)$ obtained by assigning $x = \frac{1}{2}$ and the Tristram *d*-signature ($d \ge 3$ and prime) corresponds to $x = \frac{d-1}{2d}$ which we denote by $\sigma_d(k) = \sigma_{e^{i\pi}\frac{d-1}{d}}$ (Tristram [24]).

In the following, $b_2^+(X)$ (respectively, $b_2^-(X)$) is the rank of the positive (respectively, negative) part of the intersection form of the oriented, smooth and compact 4-manifold X. Let $\sigma(X)$ denote the signature of M^4 . Then a class $\xi \in H_2(X, \mathbb{Z})$ is said to be characteristic provided that $\xi . x \equiv x.x$ for any $x \in H_2(X, \mathbb{Z})$ where $\xi . x$ stands for the pairing of ξ and x, i.e. their Kronecker index and ξ^2 for the self-intersection of ξ in $H_2(M^4, \mathbb{Z})$. **Theorem 3.2 (Gilmer and Viro** [10, 25]). Let X be an oriented, compact 4-manifold with $\partial X = S^3$, and K a knot in ∂X . Suppose K bounds a surface of genus g in X representing an element ξ in $H_2(X, \partial X)$.

(1) If ξ is divisible by an odd prime d, then:

$$\left|\frac{d^2-1}{2d^2}\xi^2 - \sigma(X) - \sigma_d(K)\right| \le \dim H_2(X; \mathbb{Z}_d) + 2g.$$

(2) If ξ is divisible by 2, then:

$$\left|\frac{\xi^2}{2} - \sigma(X) - \sigma(K)\right| \le \dim H_2(X; \mathbb{Z}_2) + 2g.$$

The following theorem gives a lower bound for the the genus of a characteritic class embedded in a 4-manifold:

Theorem 3.3 (Acosta [1], Fintushel [8], Yasuhara [27]). Let X be a smooth closed oriented simply connected 4-manifold with $m = \min(b_2^+(X), b_2^-(X))$ and $M = \max(b_2^+(X), b_2^-(X))$, and assume that $m \ge 2$. If Σ is an embedded surface in X of genus g so that $[\Sigma]$ is characteristic, then

$$g \geq \begin{cases} \frac{\mid \Sigma . \Sigma - \sigma(X) \mid}{8} + 2 - M, & \text{if } \Sigma . \Sigma \leq \sigma(X) \leq 0 \quad \text{or } 0 \leq \sigma(X) \leq \Sigma . \Sigma, \\ \frac{9(\mid \Sigma . \Sigma - \sigma(X) \mid)}{8} + 2 - M, & \text{if } \sigma(X) \leq \Sigma . \Sigma \leq 0 \quad \text{or } \leq \Sigma . \Sigma \leq \sigma(X), \\ \frac{\mid \Sigma . \Sigma - \sigma(X) \mid}{8} + 2 - m, & \text{if } \sigma(X) \leq 0 \leq \Sigma . \Sigma \quad \text{or } \Sigma . \Sigma \leq 0 \leq \sigma(X). \end{cases}$$

Using the knot filtration on the Heegaard Floer complex CF, Ozsvath and Szabo introduced in [23] an integer invariant $\tau(K)$ for knots. They showed that $|\tau(T(p,q))| = \frac{(p-1)(q-1)}{2}$ (see [23, Corollary 1.7]). In addition, they give a lower bound for the genus of a surface Σ bounding a knot in a 4-manifold. To state their result, let X be a smooth, oriented four-manifold with $\partial X = S^3$ and with $b^+(X) = b_1(X) = 0$. According to Donaldson's celebrated theorem [3], the intersection form of W is diagonalizable. Writing a homology class $[\Sigma] \in H_2(X)$ as $[\Sigma] = s_1.e_1 + \cdots + s_b.e_b$, where e_i are an ortho-normal basis for $H_2(X; Z)$, and $s_i \in \mathbb{Z}$, we can define the L^1 norm of $[\Sigma]$ by $|[\Sigma]| = |s_1| + \cdots + |s_b|$. Note that this is independent of the diagonalization (since the basis e_i is uniquely characterized, up to permutations and multiplications by ± 1 , by the ortho-normality condition). We then have the following bounds on the genus of $[\Sigma]$:

Theorem 3.4 (Ozsvath and Szabo [23]). Let X be a smooth, oriented fourmanifold with $b_2^+(X) = b_1(X) = 0$, and $\partial X = S^3$. If Σ is any smoothly embedded surface-with-boundary in X whose boundary lies on S^3 , where it is embedded as the knot K, then we have the following inequality:

$$\tau(K) + \frac{|[\Sigma]| + [\Sigma].[\Sigma]}{2} \le g(\Sigma).$$

4. Proof of Statements

To prove Theorems 1.1 and 1.2, we need the following lemma.

Lemma 4.1. Let d be an odd prime number. Then the d-signature of a (2, q)-torus knot $(q \ge 3)$ is given by the formula:

$$\sigma_d((T(2,q)) = -(q-1) + 2\left[\frac{q}{2d}\right],$$

where [x] denotes the greatest integer less or equal to x.

Proof. We use Litherland's algorithm to compute $\sigma_d((T(2,q)))$. In this case, $y_{1,j} = \frac{1}{p} + \frac{j}{q}$ and $x = \frac{d-1}{2d}$. Therefore,

- $1 + \frac{d-1}{2d} < \frac{1}{2} + \frac{j}{q} < 2$ is equivalent to $1 + \left[\frac{(2d-1)q}{2d}\right] \le j \le q-1$.
- $\frac{d-1}{2d} < \frac{1}{2} + \frac{j}{q} < 1 + \frac{d-1}{2d}$ is equivalent to $1 \le j \le \left[\frac{(2d-1)q}{2d}\right]$.

Litherland's algorithm yields that $\sigma_d((T(2,q)) = (q-1) - 2\left[\frac{(2d-1)q}{2d}\right]$. It is easy to check that this is equivalent to $\sigma_d((T(2,q)) = -(q-1) + 2\left[\frac{q}{2d}\right]$.

4.1. Proof of Theorem 1.1

Proof.

- (1) It is easy to check that T(-2,3) is obtained by a single (-1,2)-twisting and also by a single (-1,3)-twisting from the unknot, and therefore T(-2,3) is smoothly slice in $\mathbb{C}P^2$, or equivalentely, $g_{\mathbb{C}P^2}(T(-2,3)) = 0$. Theorems 3.2 and 2.1 yield that the only possible degrees are $d \in \{\pm 2, \pm 3\}$; realizable by the twisting disks.
- (2) Note that T(-2,5) can be obtained from the unknot by a single (-1,3)-twisting (see Fig. 6), which proves that T(-2,5) is smoothly slice in CP² with degree d = +3 (see [21]). Theorems 3.2 and 2.1 yield that the only possible degrees are d = ±3; realizable by the twisting disks.
- (3) Theorem 2.2 yields that T(-2,7) and T(-2,9) are slice with degree d = 4. We can deduce from Theorems 3.2 and 2.1 that the only realizable degrees are $d = \pm 4$.
- (4) To show that $g_{\mathbb{C}P^2}(T(-2,11)) = 1$ and $d \in \{\pm 4, \pm 5\}$, we first notice that T(-2,11) is obtained from T(-2,9) by adding two half-twisted bands. By Theorem 2.2, T(-2,9) is smoothly slice in $\mathbb{C}P^2$. Thus $g_{\mathbb{C}P^2}(T(-2,11)) \leq 1$.

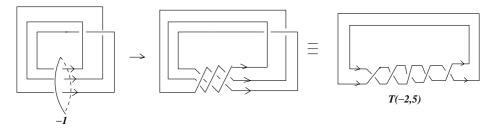


Fig	6
гıg.	. 0.

To show that $g_{\mathbb{C}P^2}(T(-2,11)) = 1$, let Σ_g be a minimal genus smooth, compact, connected and oriented surface in $\mathbb{C}P^2 - B^4$ with boundary T(-2,11), and assume that $[\Sigma_g] = d\gamma \in H_2(\mathbb{C}P^2 - B^4, S^3, \mathbb{Z}).$

Case 1. If d is even, then by Theorem 3.2.(2), $\left| \frac{d^2}{2} - \sigma(T(-2,11)) - 1 \right| \le 1 + 2g$. By A.G. Tristram [24], $\sigma(T(-2,11)) = 10$, then d satisfies $20 - 4g \le d^2 \le 24 + 4g$. Therefore, g = 1 and $d = \pm 4$ are the only possibilities.

Case 2. Assume now that d is odd. We can check that T(2, 11) is obtained from the unknot T(-2, 1) by a single (6, 2)-twisting. It was proved in [21] and [7], using Kirby's calculus on the Hopf link [18], that this yields the existence of a properly embedded disk $D \subset S^2 \times S^2 - B^4$ such that $[D] = -2\alpha + 6\beta$ and $\partial D = T(2, 11)$. The genus g surface $\Sigma = \Sigma_g \cup D$ satisfies $[\Sigma_g \cup D] = d\gamma - 2\alpha + 6\beta \in H_2(\mathbb{C}P^2 \# S^2 \times S^2, \mathbb{Z})$. Note that Σ is a characteristic class and $[\Sigma]^2 = d^2 - 24$. Assume first that $|d| \ge 7$, so blowing up $\Sigma \subset S^2 \times S^2 \# \mathbb{C}P^2$ a number of times equal to $d^2 - 24$ gives a genus g surface $\tilde{\Sigma} \subset \mathbb{C}P^2 \# S^2 \times S^2 \# (d^2 - 24)\mathbb{C}P^2 = X$ (the proper transform) with $[\tilde{\Sigma}]^2 = 0$. If e_i denotes the homology class of the exceptional sphere in the i^{th} blow-up $(i = 1, 2, \ldots, d^2 - 24)$, then $[\tilde{\Sigma}] = d\gamma - 2\alpha + 6\beta - \sum_{i=1}^{i=d^2-24} e_i \in H_2(X, \mathbb{Z})$. The last inequality of Theorem 3.3 yields that $g \ge \frac{|\sigma(X)|}{8}$, which is equivalent to $g \ge \frac{d^2-25}{8}$; which contradicts the assumptions $g \le 1$ and $|d| \ge 7$. Therefore, if d is odd then $d \in \{\pm 1, \pm 3, \pm 5\}$ and g = 1.

- (a) To exclude $d \in \{\pm 1, \pm 3\}$, let Σ_1 be a genus-one smooth, compact, connected and oriented surface in $\mathbb{C}P^2 B^4$ with boundary T(-2, 11), such that $[\Sigma_1] = d\gamma \in H_2(\mathbb{C}P^2 B^4, S^3, \mathbb{Z})$. Thus, the surface with the other orientation $(\overline{\Sigma}_1, \partial \overline{\Sigma}_1) \subset (\overline{\mathbb{C}P^2} B^4, S^3)$ is a genus-one surface bounding T(2, 11) such that $[\overline{\Sigma}_1] = \pm d\overline{\gamma}$ in $H_2(\overline{\mathbb{C}P^2} B^4, S^3, \mathbb{Z})$. By Theorem 3.4, we have $\tau(T(2, 11)) + \frac{||\overline{\Sigma}_1|| + |\overline{\Sigma}_1|^2}{2} \leq g(\overline{\Sigma}_1)$. Since $\tau(T(2, 11)) = 5$, $||\overline{\Sigma}_1|| = ||d||$ and $||\overline{\Sigma}_1||^2 = -d^2$, then $5 + \frac{|d|-d^2}{2} \leq 1$, a contradiction.
- (a) If $d = \pm 5$, then by Lemma 4.1, we have $\sigma_5(T(-2,11)) = 8$ and then Theorem 3.2.(2) yields that g = 1 and $d = \pm 5$ are two possibilities.

4.2. Proof of Theorem 1.2

To prove Theorem 1.2, we recall the definition of band surgery:

Band surgery. Let L be a μ -component oriented link. Let B_1, \ldots, B_{ν} be mutually disjoint oriented bands in S^3 such that $B_i \cap L = \partial B_i \cap L = \alpha_i \cup \alpha'_i$, where $\alpha_1, \alpha'_1, \ldots, \alpha_{\nu}, \alpha'_{\nu}$ are disjoint connected arcs. The closure of $L \cup \partial B_1 \cup \cdots \cup \partial B_{\nu}$ is also a link L'.

Definition 4.2. If L' has the orientation compatible with the orientation of $L - \bigcup_{i=1,\ldots,\nu} \alpha_i \cup \alpha'_i$ and $\bigcup_{i=1,\ldots,\nu} (\partial B_i - \alpha_i \cup \alpha'_i)$, then L' is called the link obtained by the *band surgery* along the bands B_1, \ldots, B_{ν} . If $\mu - \nu = 1$, then this operation is called a *fusion*.

Example 4.3. Let $L_{p,q} = K_1^1 \cup \cdots \cup K_p^1 \cup K_1^2 \cup \cdots \cup K_q^2$ denote the ((p,0), (q,0))-cable on the Hopf link with linking number 1 (see Fig. 7). Then, T(2,9) can be obtained from $L_{2,4}$ by fusion (see Fig. 8).

Example 4.4. Any (p, 2kp+1)-torus knot (k > 0) is obtained from $L_{p,kp}$ by adding (p-1)(k+1) bands (see Yamamoto's construction in [26]). This construction can be generalized to any (p, q)-torus.

For convenience of the reader, we give a smooth surface that bounds $L_{p,q}$ in $T^4 - J$ (J is a 4-ball); due to Kawamura (see [14, 15]): Consider $T^4 = T^2 \times T^2$

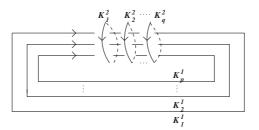


Fig. 7. The link $L_{p,q}$.

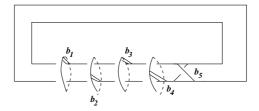


Fig. 8.

where $T^2 = [0, 1] \times [0, 1] / \sim$ such that $(0, t) \sim (1, t)$ and $(s, 0) \sim (s, 1)$, and define *E* and *J* by:

$$E = \bigcup_{k=1,\dots,p} \left(\frac{k}{p+1}, \frac{k}{p+1}\right) \times T^2 \cup \bigcup_{k=1,\dots,q} T^2 \times \left(\frac{k}{q+1}, \frac{k}{q+1}\right)$$

and $J = [\frac{1}{p+2}, \frac{p+1}{p+2}]^2 \times [\frac{1}{q+2}, \frac{q+1}{q+2}]^2$. The 4-ball J contains all self-intersections of E and we have:

Theorem 4.5 (Kawamura [14, 15]). $\partial(E-J) = E \cap \partial J \subset \partial J$ is the link $L_{p,q}$.

Auckly proved the following in [6].

Theorem 4.6. 0 is a basic class of T^4 .

To prove Theorem 1.2, we need Proposition 4.7 and Lemma 4.8.

Proposition 4.7. If $K_{p,q}$ is a knot obtained from $L_{p,q}$ by fusion and Σ_g a smooth, compact, connected and oriented surface properly embedded in $\mathbb{C}P^2 - B^4$ with boundary $K_{p,q}$ in $\partial(\mathbb{C}P^2 - B^4)$. Assume $[\Sigma_q] = d\gamma \in H_2(\mathbb{C}P^2 - B^4, S^3)$, then

$$2pq - d^2 + |d| \le 2(p + q + g) - 2.$$

Proof. By Theorem 4.5, there exists a surface E and a 4-ball J, such that: $\partial(E - J) = L_{p,q}$ (see Fig. 9). Since $K_{p,q}$ is obtained from $L_{p,q}$ by fusion, then there exists a (p + q + 1)-punctured sphere \hat{F} in $S^3 \times [0,1] \subset J$ such that we can identify this band surgery with $\hat{F} \cap (S^3 \times \{1/2\})$, and $\partial \hat{F} = L_{p,q} \cup K_{p,q}$ with $L_{p,q}$ lies in $S^3 \times \{0\} \cong \partial J \times \{0\}$ and $K_{p,q}$ lies in $S^3 \times \{1\} \cong \partial J \times \{1\}$. The 3-sphere $S^3 \times \{1\} (\cong \partial J \times \{1\})$ bounds a 4-ball $B^4 \subset J$. The surface $F = (E - J) \cup \hat{F}$ is a

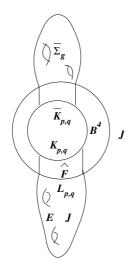


Fig. 9. The surface $\Sigma = (E - J) \cup \hat{F} \cup \overline{\Sigma}_{g}$.

smooth surface properly embedded in $T^4 - B^4$, and with boundary $K_{p,q}$. Since $K_{p,q}$ bounds a genus g surface $\Sigma_g \subset \mathbb{C}P^2 - B^4$, then $\overline{K}_{p,q}$ bounds a properly embedded genus g surface $\overline{\Sigma}_g \subset \overline{\mathbb{C}P^2} - B^4$ such that $[\overline{\Sigma}_g] = \pm d\overline{\gamma} \in H_2(\overline{\mathbb{C}P^2} - B^4, S^3; \mathbb{Z})$. The smooth surface $\Sigma = F \cup \overline{\Sigma}_g$ in $T^4 \# \overline{\mathbb{C}P^2}$ satisfies $[\Sigma]^2 = F^2 + (\overline{\Sigma}_g)^2$. Since F and E are homologous, then $F^2 = E^2 = 2pq$ which implies that $[\Sigma]^2 = 2pq - d^2$. By Theorem 4.6, 0 is a basic class for T^4 , then the basic class of $T^4 \# \overline{\mathbb{C}P^2}$ (the blowup of T^4) is $K = \pm \overline{\gamma}$ (see [9]), and therefore $|K.\Sigma| = |d|$. Since $g(E - B^4) = p + q$, then $g(\Sigma) = p + q + g$. The adjunction inequality proved by Kronheimer and Mrowka [22] implies that $[\Sigma]^2 + |K.\Sigma| \leq 2g(\Sigma) - 2$. Therefore, $2pq - d^2 + |d| \leq 2(p + q + g) - 2$.

Lemma 4.8. Let $(\Sigma_g, \partial \Sigma_g) \subset (\mathbb{C}P^2 - B^4, S^3)$ be a genus-minimizing smooth, compact, connected and oriented surface properly embedded in $\mathbb{C}P^2 - B^4$ with bondary T(2,q) and let

$$[\Sigma_g] = d\gamma \in H_2(\mathbb{C}P^2 - B^4; \mathbb{Z}).$$

- (1) If d is even, then $g = \frac{q-3}{2}$ and d = 0. Therefore Conjecture 1.1 holds in case d is even.
- (2) Conjecture 1.1 holds in case $d = \pm 1$.

Proof.

- (1) For any q > 0, we can check that T(2,q) is obtained from T(2,3) by adding q-3 half-twisted bands, then there is a genus $\frac{q-3}{2}$ cobordism between T(2,3) and T(2,q). Since T(2,3) is slice in $\mathbb{C}P^2$, then $g \leq \frac{q-3}{2}$. Since d is even, then by Theorem 3.2(1), $|\frac{d^2}{2} 1 \sigma(T(2,q))| \leq 1 + 2g$. By Tristram [24], $\sigma(T(2,q)) = -(q-1)$, and then $\frac{d^2}{4} + \frac{q-3}{2} \leq g$ which implies that $\frac{q-3}{2} \leq g$ and d = 0. Therefore, Conjecture 1.1 holds in case d is even.
- (2) To prove that Conjecture 1.1 holds in case $d = \pm 1$, note that T(2,q) is obtained from $L_{(2,\frac{q-1}{2})}$ by fusion, and then apply Proposition 4.7.

Proof of Theorem 1.2. If d is even, then by Lemma 4.8(2), $g_{\mathbb{C}P^2}(T(2,q) = \frac{q-3}{2})$ for $3 \leq q \leq 17$ and the only possible degree is d = 0; realizable by the twisting disk Δ . If d is odd, then by Lemma 4.8, we can assume, from now on, that $d \in \mathbb{Z} - \{\pm 1\}$.

(1) If q = 3 then it is not hard to check that T(2,3) can be obtained by a single (-1,0)-twisting from the unknot. This implies that T(2,3) is smoothly slice in $\mathbb{C}P^2$, or equivalentely $g_{\mathbb{C}P^2}(T(2,3)) = 0$. To prove that d = 0 is the only possibility, let $(\Delta, \partial \Delta) \subset (\mathbb{C}P^2 - B^4, S^3)$ be a smooth 2-disk such that $\partial \Delta = T(2,3)$, and assume that $[\Delta] = d\gamma \in H_2(\mathbb{C}P^2 - B^4, S^3)$. It is easy to check that $T(2,1) \xrightarrow{(-2,2)} T(-2,3)$. By [21] and [7], there exists a properly embedded disk $D \subset S^2 \times S^2 - B^4$ such that $[D] = 2\alpha + 2\beta \in H_2(S^2 \times S^2 - B^4, S^3, \mathbb{Z})$ and $\partial D = T(-2,3)$. The genus g surface $\Sigma = \Sigma_g \cup_{T(2,3)} D$ satisfies

 $[\Sigma] = d\gamma + 2\alpha + 2\beta \in H_2(\mathbb{C}P^2 \# S^2 \times S^2; \mathbb{Z})$ and then $[\Sigma]^2 = d^2 + 8$. Blowing up Σ a number of times equal to $d^2 + 8$ gives a genus g surface $\tilde{\Sigma} \subset \mathbb{C}P^2 \# S^2 \times S^2 \# (d^2 + 8)\overline{\mathbb{C}P^2} = X$ (the proper transform) with $[\tilde{\Sigma}]^2 = 0$. The last inequality of Theorem 3.3 yields that $g \geq \frac{d^2+7}{8}$. Therefore, T(2,3) is not slice, a contradiction.

- (2) For q = 5, note that $T(-2, 1) \xrightarrow{(-2,2)} T(-2, 5)$. By the same argument as in case q = 3, Theorem 3.3 yields that $g \ge \frac{d^2+7}{8}$. This would contradict the assumptions $g \le 2$ and $|d| \ne 1$.
- (3) For q = 7, we can also notice that $T(2,1) \xrightarrow{(-4,2)} T(-2,7)$. By a similar argument, we get a genus g surface $\Sigma = \Sigma_g \cup_{T(2,7)} D$ such that $[\Sigma] = d\gamma + 2\alpha + 4\beta \in H_2(\mathbb{C}P^2 \# S^2 \times S^2, \mathbb{Z})$. Since $[\Sigma]^2 = d^2 + 16$, then blowing up Σ a number of times equal to $d^2 + 16$ gives a genus g surface $\tilde{\Sigma} \subset \mathbb{C}P^2 \# S^2 \times S^2 \# (d^2 + 16)\overline{\mathbb{C}P^2} = X$ with $[\tilde{\Sigma}]^2 = 0$. The last inequality of Theorem 3.3 yields that $g \geq \frac{d^2+15}{8}$. This would contradict the assumptions $g \leq 2$ and $|d| \neq 1$.
- (4) The case q = 9 is similar to q = 7 since $T(-2,1) \xrightarrow{(-4,2)} T(-2,9)$, then we can conclude from Theorem 3.3 that $g \ge \frac{d^2+15}{8}$. Since $g \le 3$, then the only possibilities are $d = \pm 3$ and g = 3; excluded by Theorem 3.2(2) and Lemma 4.1 $(\sigma_3(T(2,9)) = -6)$.
- (5) For q = 11, we can check that $T(2, 1) \xrightarrow{(-6,2)} T(-2, 11)$. By a similar argument, we get a surface Σ such that $[\Sigma] = d\gamma + 2\alpha + 6\beta \in H_2(\mathbb{C}P^2 \# S^2 \times S^2; \mathbb{Z})$ and $[\Sigma]^2 = d^2 + 23$. Blowing up Σ a number of times equal to $d^2 + 24$ gives a surface $\tilde{\Sigma} \subset \mathbb{C}P^2 \# S^2 \times S^2 \# (d^2 + 24)\overline{\mathbb{C}P^2} = X$ such that $[\tilde{\Sigma}] = d\gamma + 2\alpha + 6\beta - \sum_{i=1}^{i=d^2+24} e_i \in H_2(X,\mathbb{Z})$ and then $[\tilde{\Sigma}]^2 = 0$. Since $\sigma(X) = -d^2 - 23$, then Theorem 3.3 implies that $g \geq \frac{d^2+23}{8}$. Since $g \leq 4$, then the only possibilities are $d = \pm 3$ and g = 4; excluded by Theorem 3.2(2) and Lemma 4.1 $(\sigma_3(T(2, 11)) = -8)$.
- (6) For q = 13, we can easily check that $T(2, -1) \xrightarrow{(-6,2)} T(-2, 13)$, and Lemma 4.1 yields that $\sigma_3(T(2, 13)) = -8$. Then, the argument is similar to the case q = 11.
- (7) For q = 15, we have $T(2, -1) \xrightarrow{(-8,2)} T(-2, 15)$. Theorem 3.3 implies that $g \ge \frac{d^2+31}{8}$; which excludes the cases where $|d| \ge 5$. Lemma 4.1 yields that $\sigma_3(T(2, 15)) = -10$; which yields that the case $d = \pm 3$ and g = 5 are two possibilities.
- (8) For q = 17, we have $T(2, -1) \xrightarrow{(-8,2)} T(-2, 17)$. Lemma 4.1 yields that $\sigma_3(T(2, 17)) = -12$. Then the argument is similar to the case q = 15.

Acknowledgments

I would like to thank the referee for his valuable suggestions, and UC Riverside Mathematics Department for hospitality.

References

- [1] D. Acosta, Spin orbifolds and the minimal genus problem, Dissertation, Tulane University (1997).
- [2] M. Ait Nouh, Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D thesis, University of Provence, Marseille (France) (2000).
- [3] M. Ait Nouh, The minimal genus problem: Lawson's conjectures, preprint (2008).
- [4] M. Ait Nouh, Characteristic invariant of knots in S^3 , preprint (2008).
- [5] M. Ait Nouh and A. Yasuhara, Torus Knots that can not be untied by twisting, *Revista Math. Compl. Madrid*, XIV(8) (2001) 423–437.
- [6] D. Auckly, Surgery, Knots, and the Seiberg-Witten Equations, Lectures for the 1995 TGRCIW, preprint.
- [7] T. Cochran and R. E. Gompf, Applications of Donaldson's theorems to classical knot concordance, homology 3-sphere and property P, *Topology* 27 (1988) 495–512.
- [8] R. Fintushel, private communication with Terry Lawson.
- [9] P. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed Thom conjecture, *Turkish. J. Math.* 19 (1995) 27–40.
- [10] P. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264 (1981) 353–38.
- [11] H. Goda and C. Hayashi and J. Song, Unknotted twistings of torus knots T(p, p+2), preprint (2003).
- [12] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics, Vol. 20 (American Mathematical Society, Providence, Rhode Island).
- [13] L. H. Kauffman, On Knots, Annals of Mathematics Studies, Vol. 115 (Princeton University Press, 1987).
- [14] T. Kawamura, The unknotting numbers of 10_{139} and 10_{152} are 4, Osaka J. Math. **35** (1998) 539–546.
- [15] T. Kawamura, Four-dimensional invariants of links and the adjunction formula, J. Knot Theory Ramifications 11(3) (2002) 323–340.
- [16] A. Kawauchi, A Survey on Knot Theory (Birkhausser Verlag, Basel, Boston, Berlin, 1996).
- [17] K. Kikuchi, Representing positive homology classes of $\mathbb{C}P^2 \# 2\overline{\mathbb{C}P^2}$ and $\mathbb{C}P^2 \# 3\overline{\mathbb{C}P^2}$, *Proc. Amer. Math. Soc.* **117**(3) (1993) 861–869.
- [18] R. C. Kirby, *The Topology of 4-Manifolds*, Lectures Notes in Mathematics (Springer-Verlag, 1980).
- [19] T. Lawson, The minimal genus problem, Expo. Math. 15 (1997) 385–431.
- [20] R. A. Litherland, Signature on iterated torus knots, in *Topology of Low-Dimensional Manifolds, Proceedings*, Sussex 1977 (Springer-Verlag, 1979), pp. 71–84.
- [21] K. Miyazaki and A. Yasuhara, Knots that can not be obtained from a trivial knot by twisting, *Comtemporary Mathematics* 164 (1994) 139–150.
- [22] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, *Math. Res. Lett.* 1 (1994) 797–808.
- [23] P. Ozsvath and Z. Szabo, Knot Floer homology and the four-ball genus, *Geom. Topol.* 7 (2003) 615–639.
- [24] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251–264.
- [25] O. Ya Viro, Link types in codimension-2 with boundary, Uspehi Mat. Nauk 30 (1970) 231–232 (in Russian).
- [26] M. Yamamoto, Lower bounds for the unknotting numbers of certain torus knots, Proc. Amer. Math. Soc. 86 (1982) 519–524.

1312 M. A. Nouh

- [27] A. Yasuhara, Connecting lemmas and representing homology classes of simply connected 4-manifolds, *Tokyo J. Math.* **19** (1996) 245–261.
- [28] A. Yasuhara, On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid 5 (1992) 255–276.
- [29] A. Yasuhara, Private communications (2000).