Hyperbolic knots and twiting

MOHAMED AIT NOUH and JESSICA PURCELL (SECOND DRAFT)

ABSTRACT

We classify knots abtained from twisting prime reduced links, and give a new condition for recognition of hyperbolic knots. We also give a combinatorial condition to exclude torus knots.

1. Introduction

Let $L = K \cup C_1 \cup C_2 ... \cup C_t$ be a prime augmented link (see [8] for definition) where K is the unknot and $\{C_1, C_2, ..., C_t\}$ is a disjoint union of trivial circles such the family $\{C_i\}_{i=1}^{i=t}$ bounds non-parallel disjonts disks $\{D_i\}_{i=1}^{i=t}$, each of which is perpendicular to the projection plane and intersects the knots at exactly m points i.e. $|D_i \cap K| = m \ge 2$ for any i = 1, 2, ...t. For convenience, we denote by $n = (n_1, n_2, ..., n_t)$ and $D = (D_1, ..., D_t)$. We successively perform a series of full n_i -twisting $(i \in \{1, 2, ..., t\})$ along Dehn disks $D_1, D_2, ..., D_t$:

$$K \stackrel{n_1 - twist}{\longrightarrow} K(n_1) \dots \stackrel{n_k - twist}{\longrightarrow} K(n_1, \dots, n_k) = K_{D,n}.$$

By Thurston geometrization theorem $M^3 = S^3 - intN(K \cup C_1 \cup C_2 ... \cup C_t)$ is either Seifert fibred, or toroidal, or hyperbolic. In case t = 1 and |n| > 1, we proved in [2] that the resulting knot $K_{D,n}$ is of the same type as the pair (K, D). If (K, D) is hyperbolic and $K_{D,n}$ is toroidal, then |n| = 1 (Ait Nouh-Matignon-Motegi [2] and Gordon-Luecke [7]). In this paper, we show a similar result provided that $|D_i \cap K| = m \ge 2$ for all i = 1, 2, ...t.

Theorem 1.1. Assume that $|n_i| > 1$ for any i = 1, 2, ...t, and L is prime and augmented. If $|D_i \cap K| = m \ge 2$ for any i = 1, 2, ...t, then $K_{D,n}$ is of the same type as (L, D). More precisely,

- (1) If M^3 is Seifert fibred, then t = 1, and $K_{D,n}$ is an $(m, n_1m \pm 1)$ -torus knot.
- (2) If M^3 is toroidal, then $K_{D,n}$ is satellite.
- (3) If M^3 is hyperbolic, then $K_{D,n}$ is hyperbolic.

2000 Mathematics Subject Classification. 57M25, 57M45 Key Words and phrases. Reduced link, twisting, hyperbolic 3-manifolds, Dehn surgery. **Correlary 1.1.** If (i) $m \ge 3$ is odd, and (ii) $t \ge 2$, (iii) $|n_i| > 1$ for any i = 1, 2, ...t, and (iv) any incoming arc of K to D_i forms a clasp with $C_i = \partial D_i$ (see Figure 2.(i)) then both L and $K_{D,n}$ are hyperbolic.

In the following Corollary, we assume that $|D_i \cap K| = 2$ for $i \in \{1, 2, ..., k\}$.

Correlary 1.2. Let k be a knot with a prime, twist-reduced diagram D(k). Assume that D(k) has $tw(D) \ge 2$ twist regions, and that each region contains at least 4 crossings. Then k is not a torus knot.

Figure 2:

2. Preliminaries

To prove Theorem 1.1., we need the following theorems:

Theorem 2.1. (D. Gabai [6]) Let M^3 be a Haken 3-manifold such that ∂M^3 contains a torus component denoted T. Denote by $M_{\phi} = M \bigcup_{\phi} S^1 \times D^2$ where $\phi \in \mathbb{Q}$, the manifold obtained by ϕ -Dehn

filling along T. Let S be a minimizing surface for the Thurston norm in $H_2(M^3, \partial M^3, \mathbb{Z})$. Then $x(\phi(S))$ is decreasing for at most one slope.

Theorem 2.1. (D. Gabai [5], J. Berge [4]) Let $V = S^1 \times D^2$ and k a knot in V such that k is not contained in a 3-ball of V, and $\alpha = \frac{p}{q} \in \mathbb{Q} \cup \{\pm \infty\}$. Then $V(\alpha) \cong V$ if and only if k is a 0-bridge or a 1-bridge relative to V.

3. Proof of results

Proof of Theorem 1.1.

If M^3 is not hyperbolic, then M^3 is either Seifert fibred or toroidal.

- (1) If M^3 is Seifert fibred, then $S^3 intN(K \cup C_1 \cup C_2 ... \cup C_t)$ is a (1, p)-fibred solid torus in which K is a regular fiber. Hence $K_{D,n}$ is a $(p, (\sum_{i=1}^{i=t} n_i)p \pm 1)$ -torus knot in S^3 . Since the wrapping number $|D_i \cap K = m|$ for any i = 1, 2, ..., t, and L is reduced, then t = 1 and p = m.
- (2) If the twisting is toroidal, then M^3 contains an essential torus T^2 .

By the solid torus theorem (J.W. Alexander [3]), T^2 bounds a solid torus V in S^3 . From now on, we denote $C = C_1 \cup C_2 \ldots \cup C_k$, There are five cases (see Figure 2):

Case 1: $K \cup C \subset S^3 - V$

This case is excluded since T^2 would be compressible (the meridian disk of V would be a compressing disk of T^2).

Case 2. $K \cup C \subset V$ (Local twisting (see Figure 2(*i*))

Since T^2 is incompressible, then V is knotted. C_1 is trivial in V, then C_1 is equivalent to a meridian of V. Therefore, C_1 is a 0-bridge knot. By Berge-Gabai's theorem $V(C_1, -\frac{1}{n_1}) = V$. Let $N_1^3 = V - int(K \cup C_1)$. Since K is a trivial knot in V, then the winding number $wind_V(K) = 0$. Therefore, there exist a surface $(S_1, \partial S_1) \subset (N_1^3, \partial V)$ such that $\partial S_1 = m_V$ where m_V is a meridian of ∂V . Let $[(S_1, \partial S_1)] = z \in H_2(N_1^3, \partial N_1^3, \mathbb{Z})$. Since N_1^3 is ∂ -irreducible, then z is not a disk and therefore its Thurston norm $x(z) \neq 0$. If we denote by $N_1^3(\alpha) = N_1^3 \bigcup_{\phi_\alpha} N(C_1)$, then the trivial surgery along C_1 gives $x(\phi_{\frac{1}{0}}(z)) = 0$, and by Gabai's theorem: $x(\phi_{-\frac{1}{n_1}}(z)) = x(z)$. This implies that $x(\phi_{-\frac{1}{n_1}}(z)) \neq 0$, and then $wrap_V(K_{n_1}) \geq 2$. Therefore, K_{n_1} is a satellite knot, for

any $n_1 \neq 0$. This proves that $\partial V(C_1, -\frac{1}{n_1}) = \partial V$ is essential in $M(-\frac{1}{n_1}) \cong E(K_{n_1})$.

Now let $N_2^3 = N_1^3 - intN(C_2)$ (= $V - intN(K \cup C_1 \cup C_2)$), which is Haken. $wind_V(K) = 0$, then $wind_V(K_{D_1,n_1}) = 0$. Therefore, there exist a surface $(S_2, \partial S_2) \subset (N_2^3, \partial V)$ such that $\partial S_2 = m_V$ where m_V is a meridian of ∂V . By a similar argument as above, we can re-apply Gabai's theorem to show that $K(n_1, n_2)$ is a satellite knot, and $M(-\frac{1}{n_1})(-\frac{1}{n_2}) \cong E(K(n_1, n_2))$. By induction, we can show that $K_{D,n}$ is satellite. **Case 3:** $K \subset V$ and $C \subset S^3 - V$ (T^2 is separating) (plain pattern twisting (see Figure 2(i))

Figure 3:

K is trivial, then V is an unknotted torus, and then its core ℓ is a trivial knot. Since $|n_1| > 1$, then the pair (C, ℓ) is not Mathieu-Domergue exception (see Figure 3), then ℓ_{n_1} is knotted. Proving that $V(C_1, -\frac{1}{n_1}) = N(\ell_{n_1})$ is equivalent to $S^3 - V(C_1, -\frac{1}{n_1}) = E(\ell_{n_1})$. Let $W = S^3 - intV$ which is an unknotted torus containing C_1 . Since $K \subset V$, then $K \subset S^3 - intW$.

$$E(\ell_{n_1}) = (W - intN(\ell \cup C_1)) \bigcup_{\substack{\phi_{-\frac{1}{n_1}}}} N(C_1)$$

= $(S^3 - intN(\ell)) - intN(C_1) \bigcup_{\substack{\phi_{-\frac{1}{n_1}}}} N(C_1)$
= $(W - intN(C)) \bigcup_{\substack{\phi_{-\frac{1}{n_1}}}} N(C_1)$
= $W(C_1, -\frac{1}{n_1})$

"In other words, the surgery is made outside V"

 $S^3 = V \cup W$ is a genus two Heegard splitting of S^3 . Therefore, we have $S^3 = V \cup W$ which implies that $S^3(C_1, -\frac{1}{n_1}) = V(C_1, -\frac{1}{n_1}) \cup W(C_1, -\frac{1}{n_1})$. Then $S^3 = V(C_1, -\frac{1}{n_1}) \cup E(\ell_{n_1})$, which implies that $V(C_1, -\frac{1}{n_1}) = N(\ell_{n_1})$. To prove that $K_{n_1} \subset N(\ell_{n_1})$, let $V_1 = V - intN(K)$, then

we have:

$$S^{3} = V \cup W \implies S^{3} - intN(K) = (V - intN(K)) \cup W$$
$$\implies S^{3} - intN(K) = V_{1} \cup W$$
$$\implies M(-\frac{1}{n_{1}}) = V_{1}(C_{1}, -\frac{1}{n_{1}}) \cup W(C_{1}, -\frac{1}{n_{1}})$$
$$\implies E(K_{n_{1}}) = V_{1}(C_{1}, -\frac{1}{n_{1}}) \cup E(\ell_{n_{1}})$$
$$\implies E(\ell_{n_{1}}) \subset E(K_{n_{1}})$$
$$\implies K_{n_{1}} \subset N(\ell_{n_{1}})$$

Let's prove now that $wr_{N(\ell_{n_1})}(K_{n_1}) \geq 2$, we note that K_{n_1} is obtained by n_1 -twisting from K along C_1 , then K is obtained by $(-n_1)$ -twisting from K_{n_1} . Therefore, K_{n_1} is not contained in a 3-ball of $V_1(C_1, -\frac{1}{n_1})$ and therefore $wrap_{N(\ell_{n_1})}(K_{n_1}) \geq 2$.

Case 4: $C \subset V$ and $K \subset S^3 - V$.

V is standarly embedded. Note that $K \subset W$ and $C \subset S^3 - W$. V and W plays similar roles, then we apply the argument of Case 1. Therefore, ∂W_{n_1} is essential in $M(-\frac{1}{n_1}) = E(K_{n_1})$, or equivalentely ∂V_{n_1} is essential in $M(-\frac{1}{n_1}) = E(K_{n_1})$. Consequently, K_{n_1} is a satellite knot with companion ℓ_{n_1} .

Figure 4: Case 4

The argument can be repeated recursively for $i \in \{1, 2, ..., k\}$. Therefore, Theorem 1.1 holds.

Case 5: The case where some $C_i \subset V$ and some $C_i \subset S^3 - V$, yield always a satellite knot (C_i does not intersect ∂V). The argument is similar to the above cases.

Proof of Corrolary 1.1:

Since $t \ge 2$, then case (1) of Theorem 1.1 is excluded. Since $m \ge 3$ is odd and K and C_i form a clasp then case (2) of Theorem 1.1 is excluded. Therefore, L and $K_{D,n}$ are both hyperbolic.

Proof of Corrolary 1.2:

Since each twist region has at least 4 crossing, then let $c_i \ge 4$ be the number of crossing in the *i*-th region R_i , with crossing circle C_i . The *augmented link* L is obtained by performing $\frac{1}{n_i}$ -Dehn surgery on each C_i as follows: If c_i is even (resp. odd), then $n_i = -\epsilon_i c_i$ (resp. $n_i = -\epsilon_i \frac{c_i - 1}{2}$), where ϵ_i is the sign of the twisting. Then $L = C \cup K$, where K is the image of k after performing Dehn surgeries along the crossing circles. Note that K is a knot in S^3 .

Case 1. If K is the unknot, then $k = K_{D,n}$. Since $c_i \ge 4$ then $|n_i| \ge 2$. Therefore, Theorem 1.1 implies that k is either a $(2, 2n_1 \pm 1)$ -torus knot, or a satellite knot, or a hyperbolic knot. Since $tw(k) \ge 2$, then k is not a $(2, 2n_1 \pm 1)$ -torus knot, and therefore k is not a torus knot.

Case 2. If K is knotted, then by construction, the unknotting number of K is less or equal to the number of twist regions with odd number of crossings. Provided that we interchange $n_i = -\epsilon_i \frac{c_i - 1}{2}$ and $n_i = -\epsilon_i \frac{c_i + 1}{2}$, the knot K can be transformed to the unknot K_0 , and then apply Theorem 1.1.

Remark. Note that the link $L_0 = C \cup K_0$ obtained in Case 2 is not the augmented link, and that $S^3 - L \cong S^3 - L_0$. In particular, since $S^3 - L$ is hyperbolic (Adams, Agol, Thurston), then $S^3 - L_0$ is hyperbolic.

References

- [1] M. Ait Nouh, Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D thesis, University of Provence, Marseille (France), (2000).
- [2] M. Ait Nouh and D. Matignon and K. Motegi, Geometric types of twisted knots, Annales mathématiques Blaise Pascal, 13 no. 1 (2006), p. 31 – 85.
- J.W. Alexander, Topological invariants of knots and links, Transactions Amer. Math. Soc. 30, pp. 275 - 306 (1928)
- [4] J. Berge, The knots in $D^2 \times S^1$ which have non-trivial Dehn surgeries that yields $D^2 \times S^1$, Topology and its Appl., vol. 38(1991), pp. 1 – 19.
- [5] D. Gabai, Surgery on knots in solid tori, Topology, vol. 28 (1989), pp. 1-6.
- [6] D. Gabai, Foliations and the topology of 3-manifolds, II, J. Diff. Geom., vol. 26 (1987), pp. 461-478.
- [7] C. McA. Gordon and J. Luecke, Non-integral Dehn toroidal Dehn surgeries, Preprint.

[8] J. Purcell, Volumes of highly twisted knots and links, Algebraic & Geometric Topology 7 (2007), pp. 93-108