Hyperbolic knots and twiting

MOHAMED AIT NOUH and JESSICA PURCELL (SECOND DRAFT)

Abstract

We classify knots abtained from twisting prime reduced links, and give a new condition for recognition of hyperbolic knots. We also give a combinatorial condition to exclude torus knots.

1. Introduction

Let $L=K \cup C_{1} \cup C_{2} \ldots \cup C_{t}$ be a prime augmented link (see [8] for definition) where K is the unknot and $\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ is a disjoint union of trivial circles such the family $\left\{C_{i}\right\}_{i=1}^{i=t}$ bounds nonparallel disjonts disks $\left\{D_{i}\right\}_{i=1}^{i=t}$, each of which is perpendicular to the projection plane and intersects the knots at exactly m points i.e. $\left|D_{i} \cap K\right|=m \geq 2$ for any $i=1,2, \ldots . t$. For convenience, we denote by $n=\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ and $D=\left(D_{1}, \ldots, D_{t}\right)$. We successively perform a series of full n_{i}-twisting $(i \in\{1,2, \ldots, t\})$ along Dehn disks $D_{1}, D_{2}, \ldots, D_{t}$:

$$
K^{n_{1}-t w i s t} K\left(n_{1}\right) \ldots \xrightarrow{n_{k}-t w i s t} K\left(n_{1}, \ldots, n_{k}\right)=K_{D, n} .
$$

By Thurston geometrization theorem $M^{3}=S^{3}-\operatorname{int} N\left(K \cup C_{1} \cup C_{2} \ldots \cup C_{t}\right)$ is either Seifert fibred, or toroidal, or hyperbolic. In case $t=1$ and $|n|>1$, we proved in [2] that the resulting knot $K_{D, n}$ is of the same type as the pair (K, D). If (K, D) is hyperbolic and $K_{D, n}$ is toroidal, then $|n|=1$ (Ait Nouh-Matignon-Motegi [2] and Gordon-Luecke [7]). In this paper, we show a similar result provided that $\left|D_{i} \cap K\right|=m \geq 2$ for all $i=1,2, \ldots t$.

Theorem 1.1. Assume that $\left|n_{i}\right|>1$ for any $i=1,2, \ldots t$, and L is prime and augmented. If $\left|D_{i} \cap K\right|=m \geq 2$ for any $i=1,2, \ldots t$, then $K_{D, n}$ is of the same type as (L, D). More precisely,
(1) If M^{3} is Seifert fibred, then $t=1$, and $K_{D, n}$ is an ($m, n_{1} m \pm 1$)-torus knot.
(2) If M^{3} is toroidal, then $K_{D, n}$ is satellite.
(3) If M^{3} is hyperbolic, then $K_{D, n}$ is hyperbolic.

Corralary 1.1. If (i) $m \geq 3$ is odd, and (ii) $t \geq 2$, (iii) $\left|n_{i}\right|>1$ for any $i=1,2$, ..t, and (iv) any incoming arc of K to D_{i} forms a clasp with $C_{i}=\partial D_{i}$ (see Figure 2.(i)) then both L and $K_{D, n}$ are hyperbolic.

In the following Corollary, we assume that $\left|D_{i} \cap K\right|=2$ for $i \in\{1,2, \ldots, k\}$.
Corralary 1.2. Let k be a knot with a prime, twist-reduced diagram $D(k)$. Assume that $D(k)$ has $t w(D) \geq 2$ twist regions, and that each region contains at least 4 crossings. Then k is not a torus knot.

Figure 1:

(ii)

Figure 2:

2. Preliminaries

To prove Theorem 1.1., we need the following theorems:
Theorem 2.1. (D. Gabai [6]) Let M^{3} be a Haken 3-manifold such that ∂M^{3} contains a torus component denoted T. Denote by $M_{\phi}=M \bigcup_{\phi} S^{1} \times D^{2}$ where $\phi \in \mathbb{Q}$, the manifold obtained by ϕ-Dehn filling along T. Let S be a minimizing surface for the Thurston norm in $H_{2}\left(M^{3}, \partial M^{3}, \mathbb{Z}\right)$. Then $x(\phi(S))$ is decreasing for at most one slope.

Theorem 2.1. (D. Gabai [5], J. Berge [4]) Let $V=S^{1} \times D^{2}$ and k a knot in V such that k is not contained in a 3 -ball of V, and $\alpha=\frac{p}{q} \in \mathbb{Q} \cup\{ \pm \infty\}$. Then $V(\alpha) \cong V$ if and only if k is a 0 -bridge or a 1-bridge relative to V.

3. Proof of results

Proof of Theorem 1.1.

If M^{3} is not hyperbolic, then M^{3} is either Seifert fibred or toroidal.
(1) If M^{3} is Seifert fibred, then $S^{3}-\operatorname{int} N\left(K \cup C_{1} \cup C_{2} \ldots \cup C_{t}\right)$ is a $(1, p)$-fibred solid torus in which K is a regular fiber. Hence $K_{D, n}$ is a $\left(p,\left(\sum_{i=1}^{i=t} n_{i}\right) p \pm 1\right)$-torus knot in S^{3}. Since the wrapping number $\left|D_{i} \cap K=m\right|$ for any $i=1,2, \ldots, t$, and L is reduced, then $t=1$ and $p=m$.
(2) If the twisting is toroidal, then M^{3} contains an essential torus T^{2}.

By the solid torus theorem (J.W. Alexander [3]), T^{2} bounds a solid torus V in S^{3}. From now on, we denote $C=C_{1} \cup C_{2} \ldots \cup C_{k}$, There are five cases (see Figure 2):

Case 1: $K \cup C \subset S^{3}-V$
This case is excluded since T^{2} would be compressible (the meridian disk of V would be a compressing disk of T^{2}).

Case 2. $K \cup C \subset V$ (Local twisting (see Figure 2(i))
Since T^{2} is incompressible, then V is knotted. C_{1} is trivial in V, then C_{1} is equivalent to a meridian of V. Therefore, C_{1} is a 0-bridge knot. By Berge-Gabai's theorem $V\left(C_{1},-\frac{1}{n_{1}}\right)=V$. Let $N_{1}^{3}=V-\operatorname{int}\left(K \cup C_{1}\right)$. Since K is a trivial knot in V, then the winding number $\operatorname{wind}_{V}(K)=0$. Therefore, there exist a surface $\left(S_{1}, \partial S_{1}\right) \subset\left(N_{1}^{3}, \partial V\right)$ such that $\partial S_{1}=m_{V}$ where m_{V} is a meridian of ∂V. Let $\left[\left(S_{1}, \partial S_{1}\right)\right]=z \in H_{2}\left(N_{1}^{3}, \partial N_{1}^{3}, \mathbb{Z}\right)$. Since N_{1}^{3} is ∂-irreducible, then z is not a disk and therefore its Thurston norm $x(z) \neq 0$. If we denote by $N_{1}^{3}(\alpha)=N_{1}^{3} \bigcup_{\phi_{\alpha}} N\left(C_{1}\right)$, then the trivial surgery along C_{1} gives $x\left(\phi_{\frac{1}{0}}(z)\right)=0$, and by Gabai's theorem: $x\left(\phi_{-\frac{1}{n_{1}}}^{\phi_{\alpha}}(z)\right)=x(z)$. This implies that $x\left(\phi_{-\frac{1}{n_{1}}}(z)\right) \neq 0$, and then $\operatorname{wrap}_{V}\left(K_{n_{1}}\right) \geq 2$. Therefore, $K_{n_{1}}$ is a satellite knot, for any $n_{1} \neq 0$. This proves that $\partial V\left(C_{1},-\frac{1}{n_{1}}\right)=\partial V$ is essential in $M\left(-\frac{1}{n_{1}}\right) \cong E\left(K_{n_{1}}\right)$.

Now let $N_{2}^{3}=N_{1}^{3}-\operatorname{int} N\left(C_{2}\right)\left(=V-\operatorname{int} N\left(K \cup C_{1} \cup C_{2}\right)\right)$, which is Haken. $\operatorname{wind}_{V}(K)=0$, then $\operatorname{wind}_{V}\left(K_{D_{1}, n_{1}}\right)=0$. Therefore, there exist a surface $\left(S_{2}, \partial S_{2}\right) \subset\left(N_{2}^{3}, \partial V\right)$ such that $\partial S_{2}=m_{V}$ where m_{V} is a meridian of ∂V. By a similar argument as above, we can re-apply Gabai's theorem to show that $K\left(n_{1}, n_{2}\right)$ is a satellite knot, and $M\left(-\frac{1}{n_{1}}\right)\left(-\frac{1}{n_{2}}\right) \cong E\left(K\left(n_{1}, n_{2}\right)\right)$. By induction, we can show that $K_{D, n}$ is satellite.

Case 3: $K \subset V$ and $C \subset S^{3}-V$ (T^{2} is separating) (plain pattern twisting (see Figure 2(i))

Figure 3:
K is trivial, then V is an unknotted torus, and then its core ℓ is a trivial knot. Since $\left|n_{1}\right|>1$, then the pair (C, ℓ) is not Mathieu-Domergue exception (see Figure 3), then $\ell_{n_{1}}$ is knotted. Proving that $V\left(C_{1},-\frac{1}{n_{1}}\right)=N\left(\ell_{n_{1}}\right)$ is equivalent to $S^{3}-V\left(C_{1},-\frac{1}{n_{1}}\right)=E\left(\ell_{n_{1}}\right)$. Let $W=S^{3}-\operatorname{int} V$ which is an unknotted torus containing C_{1}. Since $K \subset V$, then $K \subset S^{3}-\operatorname{int} W$.

$$
\begin{aligned}
E\left(\ell_{n_{1}}\right) & =\left(W-\operatorname{int} N\left(\ell \cup C_{1}\right)\right) \bigcup_{\phi_{-\frac{1}{n_{1}}}} N\left(C_{1}\right) \\
& =\left(S^{3}-\operatorname{int} N(\ell)\right)-\operatorname{int} N\left(C_{1}\right) \bigcup_{\phi_{-\frac{1}{n_{1}}}} N\left(C_{1}\right) \\
& =(W-\operatorname{int} N(C)) \bigcup_{\phi_{-\frac{1}{n_{1}}}} N\left(C_{1}\right) \\
& =W\left(C_{1},-\frac{1}{n_{1}}\right)
\end{aligned}
$$

"In other words, the surgery is made outside V"
$S^{3}=V \cup W$ is a genus two Heegard splitting of S^{3}. Therefore, we have $S^{3}=V \cup W$ which implies that $S^{3}\left(C_{1},-\frac{1}{n_{1}}\right)=V\left(C_{1},-\frac{1}{n_{1}}\right) \cup W\left(C_{1},-\frac{1}{n_{1}}\right)$. Then $S^{3}=V\left(C_{1},-\frac{1}{n_{1}}\right) \cup E\left(\ell_{n_{1}}\right)$, which implies that $V\left(C_{1},-\frac{1}{n_{1}}\right)=N\left(\ell_{n_{1}}\right)$. To prove that $K_{n_{1}} \subset N\left(\ell_{n_{1}}\right)$, let $V_{1}=V-\operatorname{int} N(K)$, then
we have:

$$
\begin{aligned}
S^{3}=V \cup W & \Longrightarrow S^{3}-\operatorname{intN}(K)=(V-\operatorname{int} N(K)) \cup W \\
& \Longrightarrow S^{3}-\operatorname{intN}(K)=V_{1} \cup W \\
& \Longrightarrow M\left(-\frac{1}{n_{1}}\right)=V_{1}\left(C_{1},-\frac{1}{n_{1}}\right) \cup W\left(C_{1},-\frac{1}{n_{1}}\right) \\
& \Longrightarrow E\left(K_{n_{1}}\right)=V_{1}\left(C_{1},-\frac{1}{n_{1}}\right) \cup E\left(\ell_{n_{1}}\right) \\
& \Longrightarrow E\left(\ell_{n_{1}}\right) \subset E\left(K_{n_{1}}\right) \\
& \Longrightarrow K_{n_{1}} \subset N\left(\ell_{n_{1}}\right)
\end{aligned}
$$

Let's prove now that $w r_{N\left(\ell_{n_{1}}\right)}\left(K_{n_{1}}\right) \geq 2$, we note that $K_{n_{1}}$ is obtained by n_{1}-twisting from K along C_{1}, then K is obtained by $\left(-n_{1}\right)$-twisting from $K_{n_{1}}$. Therefore, $K_{n_{1}}$ is not contained in a 3-ball of $V_{1}\left(C_{1},-\frac{1}{n_{1}}\right)$ and therefore $\operatorname{wrap}_{N\left(\ell_{n_{1}}\right)}\left(K_{n_{1}}\right) \geq 2$.

Case 4: $C \subset V$ and $K \subset S^{3}-V$.
V is standarly embeddded. Note that $K \subset W$ and $C \subset S^{3}-W . V$ and W plays similar roles, then we apply the argument of Case 1. Therefore, $\partial W_{n_{1}}$ is essential in $M\left(-\frac{1}{n_{1}}\right)=E\left(K_{n_{1}}\right)$, or equivalentely $\partial V_{n_{1}}$ is essential in $M\left(-\frac{1}{n_{1}}\right)=E\left(K_{n_{1}}\right)$. Consequentely, $K_{n_{1}}$ is a satellite knot with companion $\ell_{n_{1}}$.

Figure 4: Case 4

The argument can be repeated recursively for $i \in\{1,2, \ldots, k\}$. Therefore, Theorem 1.1 holds.
Case 5: The case where some $C_{i} \subset V$ and some $C_{i} \subset S^{3}-V$, yield always a satellite knot (C_{i} does not intersect $\partial V)$. The argument is similar to the above cases.

Proof of Corrolary 1.1:

Since $t \geq 2$, then case (1) of Theorem 1.1 is excluded. Since $m \geq 3$ is odd and K and C_{i} form a clasp then case (2) of Theorem 1.1 is excluded. Therefore, L and $K_{D, n}$ are both hyperbolic.

Proof of Corrolary 1.2:

Since each twist region has at least 4 crossing, then let $c_{i} \geq 4$ be the number of crossing in the i-th region R_{i}, with crossing circle C_{i}. The augmented link L is obtained by performing $\frac{1}{n_{i}}$-Dehn surgery on each C_{i} as follows: If c_{i} is even (resp. odd), then $n_{i}=-\epsilon_{i} c_{i}$ (resp. $n_{i}=-\epsilon_{i} \frac{c_{i}-1}{2}$), where ϵ_{i} is the sign of the twisting. Then $L=C \cup K$, where K is the image of k after performing Dehn surgeries along the crossing circles. Note that K is a knot in S^{3}.

Case 1. If K is the unknot, then $k=K_{D, n}$. Since $c_{i} \geq 4$ then $\left|n_{i}\right| \geq 2$. Therefore, Theorem 1.1 implies that k is either a ($2,2 n_{1} \pm 1$)-torus knot, or a satellite knot, or a hyperbolic knot. Since $t w(k) \geq 2$, then k is not a ($2,2 n_{1} \pm 1$)-torus knot, and therefore k is not a torus knot.

Case 2. If K is knotted, then by construction, the unknotting number of K is less or equal to the number of twist regions with odd number of crossings. Provided that we interchange $n_{i}=-\epsilon_{i} \frac{c_{i}-1}{2}$ and $n_{i}=-\epsilon_{i} \frac{c_{i}+1}{2}$, the knot K can be transformed to the unknot K_{0}, and then apply Theorem 1.1.

Remark. Note that the link $L_{0}=C \cup K_{0}$ obtained in Case 2 is not the augmented link, and that $S^{3}-L \cong S^{3}-L_{0}$. In particular, since $S^{3}-L$ is hyperbolic (Adams, Agol,Thurston), then $S^{3}-L_{0}$ is hyperbolic.

References

[1] M. Ait Nouh, Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D thesis, University of Provence, Marseille (France), (2000).
[2] M. Ait Nouh and D. Matignon and K. Motegi, Geometric types of twisted knots, Annales mathématiques Blaise Pascal, 13 no. 1 (2006),p. $31-85$.
[3] J.W. Alexander, Topological invariants of knots and links, Transactions Amer. Math. Soc. 30, pp. $275-306$ (1928)
[4] J. Berge, The knots in $D^{2} \times S^{1}$ which have non-trivial Dehn surgeries that yields $D^{2} \times S^{1}$, Topology and its Appl., vol. 38(1991), pp. 1-19.
[5] D. Gabai, Surgery on knots in solid tori, Topology, vol. 28 (1989), pp. $1-6$.
[6] D. Gabai, Foliations and the topology of 3-manifolds, II, J. Diff. Geom., vol. 26 (1987), pp. 461-478.
[7] C. McA. Gordon and J. Luecke, Non-integral Dehn toroidal Dehn surgeries, Preprint.
[8] J. Purcell, Volumes of highly twisted knots and links, Algebraic \& Geometric Topology 7 (2007), pp. $93-108$

