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Abstract. In this paper, we give infinite family of torus knots that can not be untied by twisting.

1. Introduction

Let K be a knot in the 3-sphere S3, and D2 a disk intersecting K in its interior. Let ω = |lk(∂D2, L)|,
and n integer. A −1/n-Dehn surgery along ∂D2 changes K into a new knot K ′ in S3. We say that K ′

is obtain from K by (n, ω)-twisting (or simply twisting). Then we write K ′
(n,ω)
→ K. Let T denote the

set of knots that are obtained from a trivial knot by a single twisting. Y. Ohyama [11] showed that
any knot can be untied by two twistings.

A (p, q)-torus knot T (p, q) is a knot that wraps around the standard solid torus in the longitudinal
direction p times and the meridional direction q times, where the linking number of the meridian and
lingitude is equlal to 1. Note that p and q are coprime. A torus knot T (p, q) (0 < p < q) is exceptional
if q ≡ ±1 (mod p), and non-exceptional if it is not exceptional.

Let p(≥ 2) be an integer. It is not hard to see that T (p,±1)
(k,p)
→ T (p, kp ± 1). Since T (p,±1) is a

trivial knot, T (p, kp ± 1) belongs to T . This implies that any exceptional torus knot belongs to T . In
particular, all of the knots T (2, q), T (3, q), T (4, q) and T (6, q) belong to T . In contrast with this fact,
Goda-Hayashi-Song proved that T (p, p + 2) does not belong to T . This gave a counterexample to an
old conjecture due to Ait Nouh and Yasuhara that states that any non-exceptional torus knot does not
belong to T .

These facts let us hit on the following

Conjecture. Any non-exceptional (p, q)-torus knot, with q 6= p + 2, does not belong to T .

K. Miyazaki and A. Yasuhara [10] gave a sufficient condition for a knot not to be contained in T and
showed that there are infinitely many knots that are not contained in T . The first author and A.
Yasuhara [2] proved that the family of (p, p+4)-torus knots is not contained in T , and also proved that
T (5, 8) is the smallest torus knot not contained in T .

Remark 1.1. In [9], K. Miyazaki and K. Motegi showed that if a non-exceptional torus knot T (p, q)
(0 < p < q) is obtained from a trivial knot by a single (n, ω)-twisting, then |n| = 1. M. Ait Nouh and
A. Yasuhara proved in [2] that n = +1.
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There are several restrictions on embedding of smooth surfaces into 4-manifolds. We use theorems from
4-dimensional topology to prove the following theorem:

Theorem 1.1 Let p be an odd integer. If p ≥ 9 and p is odd, then T (p, p + 6) does not belong to
T .

2.Preliminaries:

2.1.Twisting operation and standard 4-manifolds:

There is a connection between twisting of knots in S3 and dimension four: Any knot K−1 ob-
tained from the unknot K (or more generally, a smooth slice knot in the 4-ball) by a (−1, ω)-twisting
is smoothly slice in CP 2 with degree ω realizable by the twisting disk i.e. there exists a properly
embedded smooth disk ∆ ⊂ CP 2 − B4 such that ∂∆ = K−1 and [∆] = ωγ ∈ H2(CP 2 − B4, S3, Z).
For convenience of the reader, we give a sketch of a proof due that K. Miyazaki and A. Yasuhara
[10]: We assume K ∪ C ⊂ ∂h0 ∼= S3, where h0 denotes the 4-dimensional 0-handle (h0 ∼= B4). The
unknot K bounds a properly embedded smooth disk ∆ in h0. Then, performing a (−1)-twisting is
equivalent to adding a 2-handle h2, to h0 along C with framing +1. It is known that the resulting
4-manifold h0 ∪ h2 is CP 2 − B4 (see R. Kirby [7] for example). In addition, it is easy to verify that
[∆] = ωγ ∈ H2(CP 2 − B4, S3, Z).

More generally, we can prove, using Kirby Calculus [7] and some twisting manipulations, that a
(n, ω)-twisted knot in S3 bounds a properly embedded smooth disk ∆ in a punctured standard four
manifold of the form nCP 2 − B4 if n > 0 (see Figure 3), or | n | CP 2 − B4 if n < 0. The second
homology of [∆] can be computed from n and ω. The disk ∆ is called the twisting disk.

C
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n  times    

1 1 1
1
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n > 0( )

Figure 1:

2.2.Theorems from old gauge theory:

We use the following theorems from 4-dimensional topology to prove Theorem 1.1.In the following,
let b+

2 (resp. b−2 ) denote the dimension of the maximal positive (resp. negative) subspace for the
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intersection form on H2(X, Z). Let σ(X) denote the signature of X, and denote by γ1, ..., γn the

standard generators of the free abelian group H2(X, Z). Then ξ =
i=n
∑

i=1

aiγi ∈ H2(X, Z) is said to be

characteristic provided that ξ.x ≡ x.x for any x ∈ H2(X, Z), where ξ.x stands for the pairing of ξ and
x, i.e. their Kronecker index. In particular, ξ2 denotes the self-intersection of a class ξ in H2(X, Z).

Theorem 2.2.1. (P.M. Gilmer [3], O.Ya. Viro [14]) Let M be a compact, oriented, once punctured
4-manifold, and K a knot in ∂M . Suppose that K bounds a properly embedded, oriented surface F in
M that represent an element ξ ∈ H2(M,∂M ; Z).

(1) If ξ is divisible by an odd prime d, then: |
d2 − 1

2d2
ξ2 − σ(X) − σd(K) |≤ dimH2(X; Zd) + 2g.

(2) If ξ is divisible by 2, then: |
ξ2

2
− σ(X) − σ(K) |≤ dimH2(X; Z2) + 2g.

Theorem 2.2.2 (K. Kikuchi [6]) Let X4 be a closed, oriented and smooth 4-manifold such that:

• H1(X
4) has no 2-torsion; and

• b±1
2 ≤ 3.

(Recall σ(X4) = b+
2 − b−2 )

• If ξ = [S2] ∈ H2(X
4, Z) is a characteristic class then:

ξ2 = σ(X4)

2.3. Signature of (p, p + 6)-torus knots: To compute the signature of (p, p + 6)-torus knot, we
need the following proposition:

Proposition 2.3.1. (M. Ait Nouh and A. Yasuhara [2]) Let p(> 0) be an odd integer and r
(2 ≤ r < p) an even integer, and T (p, p + r) a torus knot. Then

σ(T (p, p + r)) = −
(p − 1)(p + r + 1)

2
+ 2

r/2
∑

i=1

([

(2i − 1)p

2r

]

−

[

(2i − 1)p + r

2r

])

Using Proposition 2.1, and some calculus, we have:

Proposition 2.3.2.

σ(T (p, p + 6)) =











−
(p − 1)(p + 7)

2
if p ≡ 5 (mod.12),

−
(p − 1)(p + 7)

2
− 6 if p ≡ 7 or 11 (mod.12).
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Proof.

By Proposition 2.3.1, we have

σ(T (p, p + 6)) = −
(p − 1)(p + 7)

2
+ 2

3
∑

i=1

([

(2i − 1)p

12

]

−

[

(2i − 1)p + 6

12

])

Which is equivalent to

σ(T (p, p+6)) = −
(p − 1)(p + 7)

2
+2

(

[ p

12

]

−

[

p + 6

12

])

+2

(

[p

4

]

−

[

p + 2

4

])

+2

([

5p

12

]

−

[

5p + 6

12

])

.

A straightforward arithmetics calculus yields Proposition 2.3.2.

3. Proofs of Theorems 1.1

Case 1. p ≡ 5 (mod. 12).

Assume for a contradiction that T (p, p + 6) is (+1, ω)-twisted, then there exists a properly

embedded disk (∆, ∂∆) ⊂ (CP 2 − B4, S3) such that [∆] = ωγ̄ ∈ H2(CP 2 − B4, S3). There are

two subcases to consider according to ω is odd or even.

Case 1.1. If ω is odd, then notice that:

T (5, 1) ∼= U
(1,5)
→ T (5, 6) ∼= T (6, 5)

(2n,6)
→ T (6, 12n + 5) ∼= T (p, 6)

(1,p)
→ T (p, p + 6).

Then the mirror-image (p, p + 6)-torus knot can be obtained by the following twistings:

T (−5, 1) ∼= U
(−1,5)
→ T (−5, 6) ∼= T (−6, 5)

(−2n,6)
→ T (−6, 12n + 5) ∼= T (−p, 6)

(−1,p)
→ T (−p, p + 6).
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Therefore, there exists a properly embedded disk (D, ∂D) ⊂ (CP 2#S2 × S2#CP 2 − B4, S3)

such that:

[D] = 5γ1 + 6α + 6nβ + pγ2 ∈ H2(CP 2#S2 × S2#CP 2 − B4, S3).

Assume that T (p, p + 6) is (+1, ω)-twisted, then there exists a properly embedded disk

(∆, ∂∆) ⊂ (CP 2 − B4, S3) such that [∆] = ωγ̄ ∈ H2(CP 2 − B4, S3). The sphere [S2] = [D ∪ ∆]

satisfies:

[S2] = 5γ1 + 6α + 6nβ + pγ2 + ωγ̄ ∈ H2(X
4, Z).

Where X4 = CP 2#S2 × S2#CP 2#CP 2. Since p and ω are odd, then [S2] ∈ H2(X4, Z) is a

characteristic class. This would contradicts Kikuchi’s theorem. Note that p = 12n + 5 for some

integer n ≥ 7, then we would have:

[S2].[S2] = σ(X4) ⇐⇒ 25 + 2 × 6 × 6n + p2 − ω2 = 1.

⇐⇒ p2 + 6p − 6 = ω2.

p2 + 6p − 6 is not a perfect square, a contradiction.

Case 1.2. If ω is even, then by Gilmer-Viro’s theorem, we have

| −
ω2

2
− σ(T (p, p + 6)) − σ(CP 2) |≤ 2.

or equivalently,

ω2

2
− 3 ≤ −σ ≤

ω2

2
+ 1.

Which is in turns equivalent to

−σ(T (p, p + 6)) =
ω2

2
.
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or

−σ(T (p, p + 6)) =
ω2

2
− 2.

By Proposition 2.2, σ(T (p, p + 6)) = −
(p − 1)(p + 7)

2
if p ≡ 5 (mod. 12). This yields, that

(p − 1)(p + 7) = ω2.

or

(p − 1)(p + 7) − 4 = ω2.

It is easy to see that neither (p − 1)(p + 7) nor (p − 1)(p + 7) − 4 is a perfect square, by a

discriminant argument.

Therefore, T (p, p + 6) is not twisted for any p ≥ 9.
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