Twisting of Composite Torus Knots

MOHAMED AIT NOUH

Abstract. We prove that the family of connected sums of torus knots $T(2, p) \# T(2, q) \# T(2, r)$ is nontwisted for any odd positive integers $p, q, r \geq 3$, partially answering in the positive a conjecture of Tera-gaito [22].

1. Introduction

Let K be a knot in the 3-sphere S^3, and D^2 a disk intersecting K in its interior. Let n be an integer. A $(-\frac{1}{n})$-Dehn surgery along $C = \partial D^2$ changes K into a new knot K_n in S^3. Let $\omega = \text{lk}(\partial D^2, L)$. We say that K_n is obtained from K by (n, ω)-twisting (or simply twisting). Then we write $K \to^{(n,\omega)} K_n$ or $K \to^{(n,\omega)} (n, \omega)$. We say that K_n is an (n, ω)-twisted knot (or simply a twisted knot) if K is the unknot (see Figure 1).

An easy example is depicted in Figure 2, where we show that the right-handed trefoil $T(2, 3)$ is obtained from the unknot $T(2, 1)$ by a $(+1, 2)$-twisting (in this case, $n = +1$ and $\omega = +2$). A less obvious example is given in Figure 3, where it is shown that the composite knot $T(2, 3) \# T(2, 5)$ can be obtained from the unknot by a $(+1, 4)$-twisting (in this case, $n = +1$ and $\omega = +4$); see [13]. Here, $T(2, q)$ denotes the $(2, q)$-torus knot (see [14]).

Active research on twisting of knots started around 1990. One pioneer was the author’s Ph.D. thesis advisor Y. Mathieu, who asked the following questions in [16].

Question 1.1. Is every knot in S^3 twisted? If not, what is the minimal number of twisting disks?

Question 1.2. Is every twisted knot in S^3 prime?

To answer Question 1.1, Miyazaki and Yasuhara [18] were the first to give an infinite family of knots that are nontwisted. In particular, they showed that the granny knot, that is, the product of two right-handed trefoil knots, is the smallest nontwisted knot. In his Ph.D. thesis [3], the author showed that $T(5, 8)$ is the smallest nontwisted torus knot. This was followed by a joint work with Yasuhara [5], in which we gave an infinite family of nontwisted torus knots (i.e., $T(p, p+7)$ for any $p \geq 7$) using some techniques derived from old gauge theory. On the other hand, Ohyama [19] showed that any knot in S^3 can be untied by (at most) two disks.

Received July 12, 2015. Revision received March 9, 2016.

ONLINE SUBJECTS: 57M25, 57Q45
To answer Question 1.2, Hayashi and Motegi [13] and M. Teragaito [23] independently found examples of composite twisted knots (see Figure 3). In particular, Goodman-Strauss [11] showed that any composite knot of the form $T(p, q) \# T(-q, p + q)$ is a twisted knot for any coprime positive integers $1 < p < q$. More generally, Hayashi and Motegi [13] and Goodman-Strauss [11] proved independently that only single twisting (i.e., $|n| = 1$) can yield a composite knot. The tools used were combinatorial methods as in CGLS [8]. Moreover, Goodman-Strauss [11] proved that K_1 and K_{-1} cannot both be composite and classified all composite knots of the form $K_1 \# K_2$, where K_1 and K_2 are both prime knots (for an extensive list of twisted composite knots, we refer the reader to the appendix of Goodman-Strauss’s paper [11]). However, there is no known twisted knot with three or more factors, that is, $k = k_1 \# k_2 \# \cdots \# k_m$, where k_i
Twisting of Composite Torus Knots

1. Conjecture 1.1 (Teragaito [22]). Any composite knot with three or more factors is nontwisted.

In this paper, we prove the following theorem.

Theorem 1.1. $T(2, p) \# T(2, q) \# T(2, r)$ is not twisted for any odd positive integers $p, q, r \geq 3$.

2. Preliminaries

In what follows, let X be a smooth, closed, oriented, simply connected 4-manifold. Then the second homology group $H_2(X; \mathbb{Z})$ is finitely generated (for details, we refer to the book by Milnor and Stasheff [17]). The ordinary form $q_X : H_2(X; \mathbb{Z}) \times H_2(X; \mathbb{Z}) \rightarrow \mathbb{Z}$ given by the intersection pairing for 2-cycles such that $q_X(\alpha, \beta) = \alpha \cdot \beta$ is a symmetric unimodular bilinear form. The signature of this form, denoted $\sigma(X)$, is the difference of the numbers of positive and negative eigenvalues of a matrix representing q_X. Let $b_2^+(X)$ (resp. $b_2^-(X)$) be the rank of the positive (resp. negative) part of the intersection form of X. The second Betti number is $b_2(X) = b_2^+(X) + b_2^-(X)$, and the signature is $\sigma(X) = b_2^+(X) - b_2^-(X)$. From now on, a homology class in $H_2(X - B^4, \partial; \mathbb{Z})$ is identified with its image by the homomorphism

$$H_2(X - B^4, \partial(X - B^4); \mathbb{Z}) \cong H_2(X - B^4; \mathbb{Z}) \rightarrow H_2(X; \mathbb{Z}).$$

Recall that $\mathbb{C}P^2$ is the closed 4-manifold obtained by the free action of $\mathbb{C}^* \equiv \mathbb{C} - \{0\}$ on $\mathbb{C}^3 - \{(0, 0, 0)\}$ defined by $\lambda(x, y, z) = (\lambda x, \lambda y, \lambda z)$, where $\lambda \in \mathbb{C}^*$, that is, $\mathbb{C}P^2 = (\mathbb{C}^3 - \{(0, 0, 0)\})/\mathbb{C}^*$. An element of $\mathbb{C}P^2$ is denoted by its homogeneous coordinates $[x : y : z]$, which are defined up to the multiplication by $\lambda \in \mathbb{C}^*$. The fundamental class of the submanifold $H = \{[x : y : z] \in \mathbb{C}P^2 | x = 0\}$ ($H \cong \mathbb{C}P^1$) generates the second homology group $H_2(\mathbb{C}P^2; \mathbb{Z})$ (see Gompf and Stipsicz [11]). Since $H \cong \mathbb{C}P^1$, the standard generator of $H_2(\mathbb{C}P^2; \mathbb{Z})$ is denoted, from now on, by $y = [\mathbb{C}P^1]$. Therefore, the standard generator of $H_2(\mathbb{C}P^2 - B^4, \mathbb{Z})$ is $\mathbb{C}P^1 - B^2 \subset \mathbb{C}P^2 - B^4$ with complex orientations.

Let $\alpha = S^2 \times \{\ast\}$ and $\beta = \{\ast\} \times S^2$ denote the standard generators of $H_2(S^2 \times S^2; \mathbb{Z})$ such that $\alpha^2 = \beta^2 = 0, \alpha \cdot \beta = 1$, and let γ (resp. γ') be the standard generators of $H_2(\mathbb{C}P^2; \mathbb{Z})$ (resp. $H_2(\overline{\mathbb{C}P}^2; \mathbb{Z})$) with $\gamma^2 = +1$ (resp. $\gamma'^2 = -1$).

A second homology class $\xi \in H_2(X; \mathbb{Z})$ is said to be characteristic if ξ is dual to the second Stiefel–Whitney class $w_2(X)$ or, equivalently,

$$\xi \cdot x \equiv x \cdot x \pmod{2}$$

for any $x \in H_2(X; \mathbb{Z})$ (we leave the details to Milnor and Stasheff [17]).
Example 2.1. \((a, b) \in H_2(S^2 \times S^2; \mathbb{Z})\) is characteristic if and only if \(a\) and \(b\) are both even.

Example 2.2. \(d\gamma \in H_2(\mathbb{CP}^2; \mathbb{Z})\) is characteristic if and only if \(d\) is odd.

The following theorems give obstructions on the genus of an embedded surface representing either a characteristic class or bounding a knot in a punctured 4-manifold. Recall that the Arf invariant of a knot \(K\) is denoted by \(\text{Arf}(K)\), \(\sigma_p(K)\) denotes the Tristram \(p\)-signature [24], and \(e_2(K)\) denotes the minimum number of generators of \(H_2(X_K; \mathbb{Z})\), where \(X_K\) is the 2-fold branched covering of \(S^3\) along \(K\).

Theorem 2.1 (Acosta [1]). Suppose that \(\xi\) is a characteristic homology class in an indefinite smooth oriented 4-manifold of genus \(g\). Let \(m = \min(b_1(X), b_2(X))\).

1. If \(\xi^2 \equiv \sigma(X) \mod 16\), then either \(\xi^2 = \sigma(X)\) or, if not,
 a. If \(\xi^2 \equiv 0\) or \(\xi^2\) and \(\sigma(X)\) have the same sign, then \(|\xi^2 - \sigma(X)|/8 \leq m + g - 1\).
 b. If \(\sigma(X) = 0\) or \(\xi^2\) and \(\sigma(X)\) have opposite signs, then \(|\xi^2 - \sigma(X)|/8 \leq m + g - 2\).

2. If \(\xi^2 \equiv \sigma(X) + 8 \mod 16\), then
 a. If \(\xi^2 \equiv -8\) or \(\xi^2 + 8\) and \(\sigma(X)\) have the same sign, then \(|\xi^2 + 8 - \sigma(X)|/8 \leq m + g + 1\).
 b. If \(\sigma(X) = 0\) or \(\xi^2 + 8\) and \(\sigma(X)\) have opposite signs, then \(|\xi^2 + 8 - \sigma(X)|/8 \leq m + g\).

Theorem 2.2 (Gilmer [10] and Viro [25]). Let \(X\) be an oriented compact 4-manifold with \(\partial X = S^3\), and \(K\) a knot in \(\partial X\). Suppose that \(K\) bounds a surface of genus \(g\) in \(X\) representing an element \(\xi\) in \(H_2(X; \mathbb{Z})\).

1. If \(\xi\) is divisible by an odd prime \(d\), then \(|(d^2 - 1)/(2d^2)\xi^2 - \sigma(X) - \sigma_d(K)| \leq \dim H_2(X; \mathbb{Z}_d) + 2g\).
2. If \(\xi\) is divisible by 2, then \(|\xi^2/2 - \sigma(X) - \sigma(K)| \leq \dim H_2(X; \mathbb{Z}_2) + 2g\).

Theorem 2.3 (Robertello [20]). Let \(X\) be an oriented compact 4-manifold with \(\partial X = S^3\), and \(K\) a knot in \(\partial X\). Suppose that \(K\) bounds a disk in \(X\) representing a characteristic element \(\xi\) in \(H_2(X; \partial X)\). Then \((\xi^2 - \sigma(X))/8 \equiv \text{Arf}(K)\) (mod 2).

Lemma 2.1. If \(K\) is a knot obtained by a \((-1, \omega)\)-twisting from the unknot \(K_0\), then \(K\) bounds a properly embedded smooth disk \((D, \partial D) \subset (\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4))\) such that \([D] = \omega\gamma \in H_2(\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4); \mathbb{Z})\).

Recall, for convenience of the reader, a proof of Lemma 2.1. As shown in Figure 4, let \(D\) be a disk on which the \((-1, \omega)\)-twisting is performed. Note that the \((+1)\)-Dehn surgery on \(\partial D = C\) changes \(K_0\) to \(K\). Regard \(K_0\) and \(D\) as contained in the boundary of a four-dimensional 0-handle \(h^0\). Then attach a 2-handle \(h^2\) to \(h^0\) along \(\partial D\) with framing \(+1\). Since \(\mathbb{CP}^2 = h^0 \cup h^2 \cup h^3\) with \(h^0 \cong B^4\) and \(h^3 \cong B^4\). \(\square\)
Twisting of Composite Torus Knots

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

\mathcal{C}_0

\mathcal{C}

Figure 4

\mathcal{C}_1

\mathcal{C}_2

\mathcal{C}_3

\mathcal{C}_p

\mathcal{C}_q

\mathcal{C}'_1

\mathcal{C}'_2

\mathcal{C}'_3

\mathcal{C}'_p

\mathcal{C}'_q

Figure 5 The link $L(p, q)$

B^4, the resulting 4-manifold $h^0 \cup h^2$ is diffeomorphic to $\mathbb{CP}^2 - B^4$ (see [15]). Let $(\Delta, \partial \Delta) \subset (B^4, \partial B^4 \cong S^3)$ be a compact and orientable disk with $\partial \Delta = K_0$. Since $\text{lk}(K_0, \partial D) = \omega$, we can check that $[\Delta] = \omega \gamma \in H_2(\mathbb{CP}^2 - B^4, S^3; \mathbb{Z})$, where γ is the standard generator of $H_2(\mathbb{CP}^2 - B^4, S^3; \mathbb{Z})$.

Lemma 2.2 (Nakanishi [18]). Suppose that K is obtained from a trivial knot K_0 by (n, ω)-twisting. If ω is even, then $e_2(K) \leq 2$.

Lemma 2.3 (Ait Nouh [2]). The d-signature of a $(2, q)$-torus knot $T(2, q)$ is given by the formula

$$\sigma_d(T(2, q)) = -(q - 1) - \left[\frac{q}{2d}\right].$$

To prove Theorem 1.1, we recall the definition of band surgery.

Let L be a c-component oriented link. Let B_1, \ldots, B_b be mutually disjoint oriented bands in S^3 such that $B_i \cap L = \partial B_i \cap L = \alpha_i \cup \alpha'_i$, where $\alpha_1, \alpha'_1, \ldots, \alpha_b, \alpha'_b$ are disjoint connected arcs. The closure of $L \cup \partial B_1 \cup \cdots \cup \partial B_b$ is also a link L'.

Definition 2.1. If L' has the orientation compatible with the orientation of $L - \bigcup_{i=1}^b \alpha_i \cup \alpha'_i$ and $\bigcup_{i=1}^b (\partial B_i - \alpha_i \cup \alpha'_i)$, then L' is called the link obtained by the band surgery along the bands B_1, \ldots, B_b. If $c = b + 1$, then this operation is called a fusion.

Example 2.3. Let $L(p, q) = C_1 \cup \cdots \cup C_p \cup C'_1 \cup \cdots \cup C'_q$ denote the $((p, 0), (q, 0))$-cable on the Hopf link with linking number 1 (see Figure 5). Then
Figure 6

$T(2,5)$ (resp. $T(2,7)$) can be obtained from $L(2,2)$ (resp. $L(2,4)$) by fusion (see Figure 6).

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following proposition.

Proposition 3.1. $T(2,p) \# T(2,q) \# T(2,r)$ is obtained from $L(2, g^* + \ell)$ by adding $b = g^* + \ell + 5$ bands, where g^* denotes the 4-ball genus of $T(2,p) \# T(2,q) \# T(2,r)$, and ℓ is the number of integers in the set \{p, q, r\} that are congruent to 3 modulo 4. In particular, there is a cobordism of genus two between $L(2, g^* + \ell)$ and $T(2,p) \# T(2,q) \# T(2,r)$, where $g^* + \ell$ is always even.

Proof. Figure 7 shows that if $p \equiv 1 \pmod{4}$ (resp. $p \equiv 3 \pmod{4}$), then $T(2,p)$ is obtained from $L(2, \frac{p-1}{2})$ (resp. $L(2, \frac{p+1}{2})$) by fusion, that is, by adding $\frac{p-1}{2} + 1$ (resp. $\frac{p+1}{2} + 1$) bands. Therefore, to prove the proposition, there are four cases to distinguish:

Case I. $p \equiv q \equiv r \equiv 1 \pmod{4}$.

Case II. $p \equiv 3$ and $q \equiv r \equiv 1 \pmod{4}$.
By a band surgery with \(b = 2 \), \(L(2, g^* + \ell) \) can be turned into a connected sum of \(L(2, \frac{p+1}{2}) \), \(L(2, \frac{q+1}{2}) \), \(L(2, \frac{r+1}{2}) \), which has \(g^* + \ell + 4 \) components.

Since each of the summands can be turned into \(T(2, p) \), \(T(2, q) \), \(T(2, r) \), respectively, by a fusion, we have that \(T(2, p) \# T(2, q) \# T(2, r) \) can be obtained from \(L(2, g^* + \ell) \) by a band surgery with \(b = g^* + \ell + 5 \).

Since each of the summands can be turned into \(T(2, p) \), \(T(2, q) \), \(T(2, r) \), respectively, by a fusion, we have that \(T(2, p) \# T(2, q) \# T(2, r) \) can be obtained from \(L(2, g^* + \ell) \) by a band surgery with \(b = g^* + \ell + 5 \).

Since the proofs of these cases are similar, we provide more details for the case \(\ell = 0 \).

Case I. \(p \equiv q \equiv r \equiv 1 \) (mod 4).

This is equivalent to \(\ell = 0 \). As shown in Figures 7 and 8, \(k = T(2, p) \# T(2, q) \# T(2, r) \) can be obtained from the link \(L(2, \frac{p+1}{2} + \frac{q+1}{2} + \frac{r+1}{2}) = L(2, g^*) \) by adding the number of bands equal to

\[
b = \frac{p - 1}{2} + \frac{q - 1}{2} + \frac{r - 1}{2} + 5
\]

\[
= g^* + 5.
\]

Note that \(c = \frac{p-1}{2} + \frac{q-1}{2} + \frac{r-1}{2} + 2 \) or, equivalently, \(c = g^* + 2 \). Since \(g_c = \frac{1-c+b}{2} \), we have that \(g_c = 2 \) and \(g^* + \ell = g^* \) is even.

Note that in all four cases, \(b = g^* + \ell + 5 \) and \(c = g^* + \ell + 2 \), and, therefore, there is a cobordism of genus \(g_c = \frac{1+c-b}{2} = 2 \) (see [9]) between \(L(2, g^* + 3) \) and \(k \).

Proof of Theorem 1.1. Assume for a contradiction that \(K \cong T(2, p) \# T(2, q) \# T(2, r) \) can be obtained by \((n, \omega)\)-twisting from an unknot \(K_0 \). Since \(e_2(T(2, p) \# T(2, q) \# T(2, r)) > 2 \), by Lemma 2.2, \(\omega \) is odd. Since \(K \) is a composite knot, \(n = \pm 1 \) (see [13; 12]). The following proofs are based on the gluing of two punctured standard 4-manifolds, as depicted in Figure 9.

Case I. Assume that \(n = +1 \). Then \(\tilde{K} = T(-2, p) \# T(-2, q) \# T(-2, r) \) can be obtained by \((1, \omega)\)-twisting along an unknot \(\tilde{K}_0 \), the inverse of the mirror-image of \(K_0 \) (see [3]). By Lemma 2.1 this yields that \(\tilde{K} \) bounds a disk \((D, \partial D) \subset (\mathbb{C}P^2 - B^2, \partial (\mathbb{C}P^2 - B^2) \cong S^3) \) such that \([D] = \omega \gamma \in H_2(\mathbb{C}P^2 - B^2, S^3; \mathbb{Z}) \), where \(\gamma \) denotes the standard generator of \(H_2(\mathbb{C}P^2; \mathbb{Z}) \) with \(\gamma^2 = +1 \).

On the other hand, there exist a 4-ball \(J \) and a mutually disjoint union of \(g^* + \ell + 2 \) properly embedded 2-disks \(\Delta_1, \Delta_2, \ldots, \Delta_{g^*+\ell+2} \) such that \(\Delta = \Delta_1 \) for a contradiction. Then \(K \cong T(2, p) \# T(2, q) \# T(2, r) \) can be obtained from \(L(2, g^* + \ell) \).
Case I: $p \equiv q \equiv r \equiv 1 \pmod{4}$

Since K is obtained from $L(2, g^* + \ell)$ by the band surgery described in Proposition 3.1, there exists a $(g^* + \ell + 3)$-punctured genus-two surface \tilde{F} in $S^3 \times [0, 1] \subset J$ such that we can identify this band surgery with $\tilde{F} \cap (S^3 \times (1/2))$, $\partial \tilde{F} = L(2, g^* + \ell) \cup k$ with $L(2, g^* + \ell)$ lies in $S^3 \times [0] \cong \partial J \times [0]$, and K lies in $S^3 \times \{1\} \cong \partial J \times \{1\}$. The 3-sphere $S^3 \times \{1\}$ bounds a 4-ball $B^4 \subset J$. The surface $F = \Delta \cup \tilde{F}$ is a smooth genus-two surface properly embedded in $S^2 \times S^2 - B^4$ and with boundary K such that

$$[F] = 2\alpha + (g^* + \ell)\beta \in H_2(S^2 \times S^2 - B^4, \partial(S^2 \times S^2 - B^4) \cong S^3; \mathbb{Z}).$$
Twisting of Composite Torus Knots

The genus-two smooth and closed surface $\Sigma = F \cup D$ satisfies

$$[\Sigma] = 2\alpha + (g^* + \ell)\beta + \omega\gamma \in H_2(S^2 \times S^2 \# \mathbb{CP}^2; \mathbb{Z}).$$

By Lemma 2.2, ω is odd, and by Proposition 3.1, $g^* + \ell$ is even. Then, $\xi = [\Sigma]$ is a characteristic class in $H_2(S^2 \times S^2 \# \mathbb{CP}^2; \mathbb{Z})$. Furthermore, $X = S^2 \times S^2 \# \mathbb{CP}^2$ is homeomorphic to $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$ (e.g., see Scorpan’s book [21], p. 239, or Corollary 4.3 in Kirby’s book [15], p. 11). Note that ξ^2 and $\sigma(X)$ have the same signs, $m = 1$, and $g = 2$. Therefore, by Theorem 2.1(1)(a) and Theorem 2.1(2)(a),

$$\frac{|\xi^2 - \sigma(X)|}{8} \leq 3,$$

or, equivalently,

$$\frac{4(g^* + \ell) + \omega^2 - 1}{8} \leq 3.$$

This yields that the only possibilities are $g^* = 3$ or 4 and $\omega = \pm 1$; equivalently, $K = T(2, 3) \# T(2, 3) \# T(2, 3)$, then $\ell = 3$ or $K = T(2, 3) \# T(2, 3) \# T(2, 5)$, and then $\ell = 2$ with $\omega = \pm 1$. Then K would bound a disk $(D, \partial D) \subset (\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4))$ such that

$$\xi = [D] = \pm \tilde{\gamma} \in H_2(\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4); \mathbb{Z}),$$

where $\tilde{\gamma}$ is the standard generator of $H_2(\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4); \mathbb{Z})$ with $\tilde{\gamma}^2 = -1$, and therefore $|\xi^2 - \sigma(X)|/8 = 0$. This contradicts Theorem 2.3 since $\text{Arf}(K) = 1$.

\[\text{Figure 9}\]
Case II. Assume that \(n = -1 \). Then there are two cases to exclude.

Case II(a). If \(\omega \) is divisible by a prime \(d \geq 3 \), then by Lemma 2.1, \(k \) bounds a smooth disk \((D, \partial D) \subset (\mathbb{C}P^2 - B^4; S^3; \mathbb{Z}) \) such that

\[
\xi = [D] = \omega \gamma \in H_2(\mathbb{C}P^2 - B^4; S^3; \mathbb{Z})
\]

By Lemma 2.3 the signatures are

\[
\sigma(K) = -(p + q + r - 3) \quad \text{and} \quad \sigma_d(K) = -(p - 1) - \left(\frac{p}{2d} \right) - (q - 1) - \left(\frac{q}{2d} \right) - (r - 1) - \left(\frac{r}{2d} \right) \quad \text{(see [2])}
\]

This contradicts Theorem 2.2.

Case II(b). If \(\omega = \pm 1 \), then by the same argument as in Case I, this would yield the existence of a genus-two surface that satisfies

\[
\xi = [\Sigma] = 2\alpha + (g^* + \ell)\beta + \bar{\gamma} \in H_2(S^2 \times S^2 \# \mathbb{C}P^2; \mathbb{Z})
\]

If we let \(X = S^2 \times S^2 \# \mathbb{C}P^2 \), then \(\xi^2 \) and \(\sigma(X) \) have opposite signs with \(m = 1 \) and \(g = 2 \). Therefore, by Theorem 2.1(1)(b) and Theorem 2.1(2)(b),

\[
\frac{\xi^2 - \sigma(X)}{8} \leq 2
\]

or, equivalently, \(g^* + \ell \leq 4 \). This yields that the only possibilities are \(g^* = 3 \) or 4; equivalently, \(K = T(2, 3) \# T(2, 3) \# T(2, 3) \), then \(\ell = 3 \) or \(K = T(2, 3) \# T(2, 3) \# T(2, 5) \), and then \(\ell = 2 \). Therefore, \(g^* + \ell = 6 \), a contradiction. \(\square \)

Acknowledgments. I would like to thank the referee for his valuable suggestions and the University of El Paso at Texas (UTEP), Mathematical Sciences Department, for hospitality.

References

Twisting of Composite Torus Knots

Department of Mathematical Sciences, Bell Hall 144
The University of Texas at El Paso
500 University Avenue
El Paso, TX 79968
USA
manouh@utep.edu
The list of entries below corresponds to the Reference section of your article and was retrieved from MathSciNet applying an automated procedure. Please update your references entries with the data from the corresponding sources, when applicable.

[3] Not Found!

[6] Not Found!

[25] Not Found!
