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Twisting of Composite Torus Knots

Mohamed Ait Nouh

Abstract. We prove that the family of connected sums of torus knots
T (2,p) # T (2, q) # T (2, r) is nontwisted for any odd positive integers
p,q, r ≥ 3, partially answering in the positive a conjecture of Tera-
gaito [22].

1. Introduction

Let K be a knot in the 3-sphere S3, and D2 a disk intersecting K in its interior.
Let n be an integer. A (− 1

n
)-Dehn surgery along C = ∂D2 changes K into a new

knot Kn in S3. Let ω = lk(∂D2,L). We say that Kn is obtained from K by (n,ω)-

twisting (or simply twisting). Then we write K
(n,ω)→ Kn or K

(n,ω)→ K(n,ω). We
say that Kn is an (n,ω)-twisted knot (or simply a twisted knot) if K is the unknot
(see Figure 1).

An easy example is depicted in Figure 2, where we show that the right-handed
trefoil T (2,3) is obtained from the unknot T (2,1) by a (+1,2)-twisting (in this
case, n = +1 and ω = +2). A less obvious example is given in Figure 3, where
it is shown that the composite knot T (2,3) # T (2,5) can be obtained from the
unknot by a (+1,4)-twisting (in this case, n = +1 and ω = +4); see [13]. Here,
T (2, q) denotes the (2, q)-torus knot (see [14]).

Active research on twisting of knots started around 1990. One pioneer was
the author’s Ph.D. thesis advisor Y. Mathieu, who asked the following questions
in [16].

Question 1.1. Is every knot in S3 twisted? If not, what is the minimal number
of twisting disks?

Question 1.2. Is every twisted knot in S3 prime?

To answer Question 1.1, Miyazaki and Yasuhara [18] were the first to give an
infinite family of knots that are nontwisted. In particular, they showed that the
granny knot, that is, the product of two right-handed trefoil knots, is the smallest
nontwisted knot. In his Ph.D. thesis [3], the author showed that T (5,8) is the
smallest nontwisted torus knot. This was followed by a joint work with Yasuhara
[5], in which we gave an infinite family of nontwisted torus knots (i.e., T (p,p+7)

for any p ≥ 7) using some techniques derived from old gauge theory. On the other
hand, Ohyama [19] showed that any knot in S3 can be untied by (at most) two
disks.
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Figure 1

Figure 2

Figure 3

To answer Question 1.2, Hayashi and Motegi [13] and M. Teragaito [23]
independently found examples of composite twisted knots (see Figure 3). In
particular, Goodman-Strauss [11] showed that any composite knot of the form
T (p,q) # T (−q,p + q) is a twisted knot for any coprime positive integers
1 < p < q . More generally, Hayashi and Motegi [13] and Goodman-Strauss [11]
proved independently that only single twisting (i.e., |n| = 1) can yield a compos-
ite knot. The tools used were combinatorial methods as in CGLS [8]. Moreover,
Goodman-Strauss [11] proved that K1 and K−1 cannot both be composite and
classified all composite knots of the form K1 # K2, where K1 and K2 are both
prime knots (for an extensive list of twisted composite knots, we refer the reader
to the appendix of Goodman-Strauss’s paper [11]). However, there is no known
twisted knot with three or more factors, that is, k = k1 # k2 # · · · # km, where ki
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is a prime knot for i = 1,2, . . . ,m, and m ≥ 3, which motivates the still open
Teragaito’s conjecture.

Conjecture 1.1 (Teragaito [22]). Any composite knot with three or more factors
is nontwisted.

In this paper, we prove the following theorem.

Theorem 1.1. T (2,p) # T (2, q) # T (2, r) is not twisted for any odd positive in-
tegers p,q, r ≥ 3.

2. Preliminaries

In what follows, let X be a smooth, closed, oriented, simply connected 4-
manifold. Then the second homology group H2(X;Z) is finitely generated (for
details, we refer to the book by Milnor and Stasheff [17]). The ordinary form
qX : H2(X;Z) × H2(X;Z) −→ Z given by the intersection pairing for 2-cycles
such that qX(α,β) = α · β is a symmetric unimodular bilinear form. The sig-
nature of this form, denoted σ(X), is the difference of the numbers of pos-
itive and negative eigenvalues of a matrix representing qX . Let b+

2 (X) (resp.
b−

2 (X)) be the rank of the positive (resp. negative) part of the intersection form
of X. The second Betti number is b2(X) = b+

2 (X) + b−
2 (X), and the signature is

σ(X) = b+
2 (X) − b−

2 (X). From now on, a homology class in H2(X − B4, ∂;Z)

is identified with its image by the homomorphism

H2(X − B4, ∂(X − B4);Z) ∼= H2(X − B4;Z) −→ H2(X;Z).

Recall that CP
2 is the closed 4-manifold obtained by the free action of

C
∗ = C− {0} on C

3 − {(0,0,0)} defined by λ(x, y, z) = (λx,λy,λz), where
λ ∈ C

∗, that is, CP2 = (C3 − {(0,0,0)})/C∗. An element of CP2 is denoted by
its homogeneous coordinates [x : y : z], which are defined up to the multipli-
cation by λ ∈C

∗. The fundamental class of the submanifold H = {[x : y : z] ∈
CP2|x = 0} (H ∼= CP1) generates the second homology group H2(CP

2;Z) (see
Gompf and Stipsicz [11]). Since H ∼= CP

1, the standard generator of H2(CP
2;Z)

is denoted, from now on, by γ = [CP1]. Therefore, the standard generator of
H2(CP

2 − B4;Z) is CP1 − B2 ⊂ CP
2 − B4 with complex orientations.

Let α = S2 × {	} and β = {	} × S2 denote the standard generators of
H2(S

2 × S2;Z) such that α2 = β2 = 0, α · β = 1, and let γ (resp. γ̄ ) be the
standard generators of H2(CP

2;Z) (resp. H2(CP2;Z)) with γ 2 = +1 (resp.
γ̄ 2 = −1).

A second homology class ξ ∈ H2(X;Z) is said to be characteristic if ξ is dual
to the second Stiefel–Whitney class w2(X) or, equivalently,

ξ · x ≡ x · x (mod 2)

for any x ∈ H2(X;Z) (we leave the details to Milnor and Stasheff [17]).
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Example 2.1. (a, b) ∈ H2(S
2 × S2;Z) is characteristic if and only if a and b are

both even.

Example 2.2. dγ ∈ H2(CP
2;Z) is characteristic if and only if d is odd.

The following theorems give obstructions on the genus of an embedded surface
representing either a characteristic class or bounding a knot in a punctured 4-
manifold. Recall that the Arf invariant of a knot K is denoted by Arf(K), σp(K)

denotes the Tristram p-signature [24], and e2(K) denotes the minimum number
of generators of H2(XK ;Z), where XK is the 2-fold branched covering of S3

along K .

Theorem 2.1 (Acosta [1]). Suppose that ξ is a characteristic homology class
in an indefinite smooth oriented 4-manifold of genus g. Let m = min(b+

2 (X),

b−
2 (X)).

(1) If ξ2 ≡ σ(X) mod 16, then either ξ2 = σ(X) or, if not,
(a) If ξ2 = 0 or ξ2 and σ(X) have the same sign, then |ξ2 − σ(X)|/8 ≤

m + g − 1.
(b) If σ(X) = 0 or ξ2 and σ(X) have opposite signs, then |ξ2 − σ(X)|/8 ≤

m + g − 2.
(2) If ξ2 ≡ σ(X) + 8 mod 16, then

(a) If ξ2 = −8 or ξ2 + 8 and σ(X) have the same sign, then |ξ2 + 8 −
σ(X)|/8 ≤ m + g + 1.

(b) If σ(X) = 0 or ξ2 + 8 and σ(X) have opposite signs, then |ξ2 + 8 −
σ(X)|/8 ≤ m + g.

Theorem 2.2 (Gilmer [10] and Viro [25]). Let X be an oriented compact 4-
manifold with ∂X = S3, and K a knot in ∂X. Suppose that K bounds a surface
of genus g in X representing an element ξ in H2(X; ∂X).

(1) If ξ is divisible by an odd prime d , then |(d2 −1)/(2d2)ξ2 −σ(X)−σd(K)| ≤
dimH2(X;Zd) + 2g.

(2) If ξ is divisible by 2, then |ξ2/2 − σ(X) − σ(K)| ≤ dimH2(X;Z2) + 2g.

Theorem 2.3 (Robertello [20]). Let X be an oriented compact 4-manifold with
∂X = S3, and K a knot in ∂X. Suppose that K bounds a disk in X representing a
characteristic element ξ in H2(X; ∂X). Then (ξ2 −σ(X))/8 ≡ Arf(K) (mod 2).

Lemma 2.1. If K is a knot obtained by a (−1,ω)-twisting from the unknot K0,
then K bounds a properly embedded smooth disk (D, ∂D) ⊂ (CP2 −B4, ∂(CP2 −
B4)) such that [D] = ωγ ∈ H2(CP

2 − B4, ∂(CP2 − B4);Z).

Recall, for convenience of the reader, a proof of Lemma 2.1. As shown in Figure 4,
let D be a disk on which the (−1,ω)-twisting is performed. Note that the (+1)-
Dehn surgery on ∂D = C changes K0 to K . Regard K0 and D as contained in
the boundary of a four-dimensional 0-handle h0. Then attach a 2-handle h2 to h0

along ∂D with framing +1. Since CP2 = h0 ∪ h2 ∪ h3 with h0 ∼= B4 and h3 ∼=

MMJ 2016/09/22 v0.17.0 Prn:2016/10/03; 11:28 F:mmj5028.tex; (Aurimas) p. 4
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Figure 4

Figure 5 The link L(p,q)

B4, the resulting 4-manifold h0 ∪ h2 is diffeomorphic to CP
2 − B4 (see [15]).

Let (�, ∂�) ⊂ (B4, ∂B4 ∼= S3) be a compact and orientable disk with ∂� = K0.
Since lk(K0, ∂D) = ω, we can check that [�] = ωγ ∈ H2(CP

2 − B4, S3;Z),
where γ is the standard generator of H2(CP

2 − B4, S3;Z).

Lemma 2.2 (Nakanishi [18]). Suppose that K is obtained from a trivial knot K0
by (n,ω)-twisting. If ω is even, then e2(K) ≤ 2.

Lemma 2.3 (Ait Nouh [2]). The d-signature of a (2, q)-torus knot T (2, q) is given
by the formula

σd(T (2, q)) = −(q − 1) −
[

q

2d

]
.

To prove Theorem 1.1, we recall the definition of band surgery.
Let L be a c-component oriented link. Let B1, . . . ,Bb be mutually disjoint ori-

ented bands in S3 such that Bi ∩L = ∂Bi ∩L = αi ∪α′
i , where α1, α

′
1, . . . , αb,α

′
b

are disjoint connected arcs. The closure of L ∪ ∂B1 ∪ · · · ∪ ∂Bb is also a link L′.

Definition 2.1. If L′ has the orientation compatible with the orientation of
L − ⋃

i=1,...,b αi ∪ α′
i and

⋃
i=1,...,b(∂Bi − αi ∪ α′

i ), then L′ is called the link ob-
tained by the band surgery along the bands B1, . . . ,Bb . If c = b + 1, then this
operation is called a fusion.

Example 2.3. Let L(p,q) = C1 ∪ · · · ∪ Cp ∪ C′
1 ∪ · · · ∪ C′

q denote the
((p,0), (q,0))-cable on the Hopf link with linking number 1 (see Figure 5). Then

MMJ 2016/09/22 v0.17.0 Prn:2016/10/03; 11:28 F:mmj5028.tex; (Aurimas) p. 5
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Figure 6

T (2,5) (resp. T (2,7)) can be obtained from L(2,2) (resp. L(2,4)) by fusion (see
Figure 6).

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following proposition.

Proposition 3.1. T (2,p) # T (2, q) # T (2, r) is obtained from L(2, g∗ + �) by
adding b = g∗ + � + 5 bands, where g∗ denotes the 4-ball genus of T (2,p) #
T (2, q) # T (2, r), and � is the number of integers in the set {p,q, r} that are
congruent to 3 modulo 4. In particular, there is a cobordism of genus two between
L(2, g∗ + �) and T (2,p) # T (2, q) # T (2, r), where g∗ + � is always even.

Proof. Figure 7 shows that if p ≡ 1 (mod 4) (resp. p ≡ 3 (mod 4)), then T (2,p)

is obtained from L(2,
p−1

2 ) (resp. L(2,
p+1

2 )) by fusion, that is, by adding
p−1

2 + 1 (resp. p+1
2 + 1) bands. Therefore, to prove the proposition, there are four

cases to distinguish:

Case I. p ≡ q ≡ r ≡ 1 (mod 4).
Case II. p ≡ 3 and q ≡ r ≡ 1 (mod 4).

MMJ 2016/09/22 v0.17.0 Prn:2016/10/03; 11:28 F:mmj5028.tex; (Aurimas) p. 6
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Figure 7

Case III. p ≡ q ≡ 3 (mod 4) and r ≡ 1 (mod 4).
Case IV. p ≡ q ≡ r ≡ 3 (mod 4).

By a band surgery with b = 2, L(2, g∗ + �) can be turned into a connected
sum of L(2,

p±1
2 ), L(2,

q±1
2 ), L(2, r±1

2 ), which has g∗ + � + 4 components.
Since each of the summands can be turned into T (2,p), T (2, q), T (2, r), re-
spectively, by a fusion, we have that T (2,p) # T (2, q) # T (2, r) can be obtained
from L(2, g∗ + �) by a band surgery with b = g∗ + � + 5. Since the proofs of
these cases are similar, we provide more details for the case � = 0.

Case I. p ≡ q ≡ r ≡ 1 (mod 4).
This is equivalent to � = 0. As shown in Figures 7 and 8, k = T (2,p) #

T (2, q)#T (2, r) can be obtained from the link L(2,
p−1

2 + q−1
2 + r−1

2 ) = L(2, g∗)
by adding the number of bands equal to

b = p − 1

2
+ q − 1

2
+ r − 1

2
+ 5

= g∗ + 5.

Note that c = p−1
2 + q−1

2 + r−1
2 + 2 or, equivalently, c = g∗ + 2. Since gc =

1−c+b
2 , we have that gc = 2 and g∗ + � = g∗ is even.
Note that in all four cases, b = g∗ + � + 5 and c = g∗ + � + 2, and, therefore,

there is a cobordism of genus gc = 1−c+b
2 (= 2) (see [9]) between L(2, g∗ + 3)

and k. �

Proof of Theorem 1.1. Assume for a contradiction that K ∼= T (2,p) # T (2, q) #
T (2, r) can be obtained by (n,ω)-twisting from an unknot K0. Since e2(T (2,p)#
T (2, q)#T (2, r)) > 2, by Lemma 2.2, ω is odd. Since K is a composite knot, n =
±1 (see [13; 12]). The following proofs are based on the gluing of two punctured
standard 4-manifolds, as depicted in Figure 9.

Case I. Assume that n = +1. Then K̄ = T (−2,p) # T (−2, q) # T (−2, r)

can be obtained by (−1,ω)-twisting along an unknot K̄0, the inverse of the
mirror-image of K0 (see [3]). By Lemma 2.1 this yields that K̄ bounds a disk
(D, ∂D) ⊂ (CP2 − B4, ∂(CP2 − B4) ∼= S3) such that [D] = ωγ ∈ H2(CP

2 −
B4, S3;Z), where γ denotes the standard generator of H2(CP

2;Z) with γ 2 = +1.
On the other hand, there exist a 4-ball J and a mutually disjoint union

of g∗ + � + 2 properly embedded 2-disks �1,�2, . . . ,�g∗+�+2 such that � =

MMJ 2016/09/22 v0.17.0 Prn:2016/10/03; 11:28 F:mmj5028.tex; (Aurimas) p. 7
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Figure 8 Case I: p ≡ q ≡ r ≡ 1 (mod 4)

⋃i=g∗+�+2
i=1 �i bounds L(2, g∗ + �) with 0 ≤ � ≤ 3 in S2 × S2 − J and [�] =

2α + (g∗ + �)β ∈ H2(S
2 × S2 − J, ∂(S2 × S2 − J ) ∼= S3;Z), where α, β denote

the standard generators of H2(S
2 × S2;Z) with α2 = β2 = 0, α · β = 1, and g∗

denotes the 4-ball genus of K .
Since K is obtained from L(2, g∗ + �) by the band surgery described in

Proposition 3.1, there exists a (g∗ + � + 3)-punctured genus-two surface F̂ in
S3 ×[0,1] ⊂ J such that we can identify this band surgery with F̂ ∩ (S3 ×{1/2}),
∂F̂ = L(2, g∗ + �) ∪ k with L(2, g∗ + �) lies in S3 × {0} ∼= ∂J × {0}, and K lies
in S3 × {1} ∼= ∂J × {1}. The 3-sphere S3 × {1} (∼= ∂J × {1}) bounds a 4-ball
B4 ⊂ J . The surface F = � ∪ F̂ is a smooth genus-two surface properly embed-
ded in S2 × S2 − B4 and with boundary K such that

[F ] = 2α + (g∗ + �)β ∈ H2(S
2 × S2 − B4, ∂(S2 × S2 − B4) ∼= S3;Z).

MMJ 2016/09/22 v0.17.0 Prn:2016/10/03; 11:28 F:mmj5028.tex; (Aurimas) p. 8
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Figure 9

The genus-two smooth and closed surface  = F ∪ D satisfies

[] = 2α + (g∗ + �)β + ωγ ∈ H2(S
2 × S2 # CP

2;Z).

By Lemma 2.2, ω is odd, and by Proposition 3.1, g∗ +� is even. Then, ξ = []
is a characteristic class in H2(S

2 ×S2 #CP2;Z). Furthermore, X = S2 × S2 # CP2

is homeomorphic to CP
2 # CP2 # CP

2 (e.g., see Scorpan’s book [21], p. 239, or
Corollary 4.3 in Kirby’s book [15], p. 11). Note that ξ2 and σ(X) have the same
signs, m = 1, and g = 2. Therefore, by Theorem 2.1(1)(a) and Theorem 2.1(2)(a),

|ξ2 − σ(X)|
8

≤ 3

or, equivalently,
4(g∗ + �) + ω2 − 1

8
≤ 3.

This yields that the only possibilities are g∗ = 3 or 4 and ω = ±1; equivalently,
K = T (2,3) # T (2,3) # T (2,3), then � = 3 or K = T (2,3) # T (2,3) # T (2,5),
and then � = 2 with ω = ±1. Then K would bound a disk (D, ∂D) ⊂ (CP2 −
B4, ∂(CP2 − B4)) such that

ξ = [D] = ±γ̄ ∈ H2(CP2 − B4, ∂(CP2 − B4);Z),

where γ̄ is the standard generator of H2(CP2 − B4, ∂(CP2 − B4);Z) with γ̄ 2 =
−1, and therefore |ξ2 − σ(X)|/8 = 0. This contradicts Theorem 2.3 since
Arf(K) = 1.

MMJ 2016/09/22 v0.17.0 Prn:2016/10/03; 11:28 F:mmj5028.tex; (Aurimas) p. 9
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Case II. Assume that n = −1. Then there are two cases to exclude.
Case II(a). If ω is divisible by a prime d ≥ 3, then by Lemma 2.1, k

bounds a smooth disk (D, ∂D) ⊂ (CP2 − B4, ∂(CP2 − B4) ∼= S3) such that
ξ = [D] = ωγ ∈ H2(CP

2 − B4;S3;Z). By Lemma 2.3 the signatures are

σ(K) = −(p + q + r − 3) and

σd(K) = −(p − 1) −
[

p

2d

]
− (q − 1) −

[
q

2d

]
− (r − 1) −

[
r

2d

]
(see [2]).

This contradicts Theorem 2.2.
Case II(b). If ω = ±1, then by the same argument as in Case I, this would yield

the existence of a genus-two surface that satisfies

ξ = [] = 2α + (g∗ + �)β + γ̄ ∈ H2(S
2 × S2 # CP2;Z).

If we let X = S2 × S2 # CP2, then ξ2 and σ(X) have opposite signs with m = 1
and g = 2. Therefore, by Theorem 2.1(1)(b) and Theorem 2.1(2)(b),

|ξ2 − σ(X)|
8

≤ 2

or, equivalently, g∗ + � ≤ 4. This yields that the only possibilities are g∗ = 3 or
4; equivalently, K = T (2,3) # T (2,3) # T (2,3), then � = 3 or K = T (2,3) #
T (2,3) # T (2,5), and then � = 2. Therefore, g∗ + � = 6, a contradiction. �
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