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Abstract. Let K be the unknot in the 3-sphere S3, and D a disk in S3

meeting K transversely in the interior, at least twice (after all isotopies).
We denote by KD,n a knot obtained from K by n twistings along the
disk D. We describe for which pairs (K, D) and integers n, KD,n is a
torus knot, a satellite knot or a hyperbolic knot.

1. Twisted knots

1.1. Definitions. Let k a knot in S3, and D a disk such that k intersects D
transversely in its interior at least twice, after all isotopies of k in S3 − ∂D.
Let kD,n be the new knot obtained from k by performing n Dehn twists
along D; n = 1 on the figure below.
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By Ohyama [16], each knot can be obtained from a trivial knot by twisting
along at most two properly chosen disks.

When k = K is the unknot, then KD,n is said to be a twisted knot, and
(K, D) a twisting pair. As an example, the trefoil knot is a twisted knot (see
the figure below).
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1.2. Geometric types of knots. Let k a knot in S3, we denote by E(k) the
exterior of k : E(k) = S3− intN(k), where N(k) is a tubular neighbourhood
of k in S3.

By the Thurston’s uniformization theorem [19], and the torus decomposi-
tion of Jaco, Shalen, Johannson [10, 11], E(k) is either (1) a Seifert fibered
space, (2) toroidal, i.e. contains an essential 2-torus (non-boundary-parallel
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and incompressible), or (3) hyperbolic (admits a complete hyperbolic struc-
ture of finite volume).

The knot k is respectively (1) a torus knot, (2) a satellite knot, or (3) a
hyperbolic knot.

This is referred to be the geometric type of a knot in S3. We are focus on
the following question.

Question 1. Can we have a good description of the geometric types of
twisted knots ?

In this context, one first question was :

Question 2 (Mathieu [13]). Is there a composite twisted knot ?

There exist composite twisted knots (see [5, 18]) but n = ±1.

Theorem 1 (Goodman-Strauss [5], Hayashi and Motegi [9]). If a twisted
knot KD,n is not prime then n = ±1.

1.3. Geometric types of twisting pairs. We define the geometric type
of a twisting pair in a similar way as for a knot in S3. Let E(K, C) be the
exterior of K ∪ C in S3, where C = ∂D : E(K, C) = S3 − intN(K ∪ C).
Since E(K, C) is irreducible and boundary-irreducible, by the Thurston’s
uniformization theorem [19], and the torus decomposition of Jaco, Shalen,
Johannson [10, 11], E(K, C) is either (1) a Seifert fibered space, (2) toroidal,
or (3) hyperbolic.

We say that the twisting pair is respectively (1) Seifert fibered, (2) toroidal,
or (3) hyperbolic.

This is referred to be the geometric type of a twisting pair in S3. We can
reformulate the fisrt question.

Question 3. For which twisting pairs (K, D) and integers n, a twisted knot
KD,n is a torus knot, a satellite knot or a hyperbolic knot ?

Theorem 2. If | n |> 1 then the twisted knot KD,n has the geometric type
of the twisting pair (K, D).

Section 2 is devoted to the Seifert fibered and toroidal twisting pairs; in
particular, to the two following results.

Proposition 1. If E(K, C) is Seifert fibered, then KD,n is a torus knot for
any integer n.

Theorem 3. If E(K, C) is toroidal and KD,n is not a satellite knot, then :
(i) (K, D) is a twisting pair as described in (1) or (2) on the figure below,

with the corresponding integer (so | n |= 1);
(ii) Moreover, V −intN(K) is Seifert fibered or hyperbolic, and the twisted

knot is a torus knot or hyperbolic knot, respectively.
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If the twisting pair is hyperbolic, then the proof of Theorem 2 follows by
the following proposition.

Proposition 2. Assume that E(K, C) is hyperbolic and | n |> 1. If KD,n

is a satellite knot then KD,n is a cable of a torus knot.

Section 3 is devoted to give the sketch of the proof of Proposition 2.

Proof of Theorem 2 when the twisting pair is hyperbolic. Let (K, D)
be a hyperbolic twisting pair. Assume that | n |> 1.

By [14], KD,n is not a torus knot. Furthermore, by [1] the Gromov volume
of KD,n is positive, i.e. KD,n is not a graph knot. Thus, by Proposition 2
KD,n is not satellite, so this is a hyperbolic knot. �

There exist non-hyperbolic twisted knots which come from hyperbolic
twisting pairs. Here are some examples of such knots, among torus knots
and satellite knots.
Torus knots from hyperbolic twisting pairs. The trefoil knot (see the
second figure) is such a knot. There exist other examples by Goda, Hayashi
and Song [4], and Wu [20].
Satellite knots from hyperbolic twisting pairs Until now, only two
types of satellite twisted knots from hyperbolic twisting pair are known :
composite knot (Motegi and Shibuya [15], see [2, Figure 1.3 (1)]) and cable
of torus knot (Goda, Hayashi and Song [4], and Ohyama [16]).

Question 4. Let (K, D) be a hyperbolic twisting pair. If KD,n is satellite,
then is it a connected sum of a torus knot and some prime knot, or a cable
of a torus knot ?

For details concerning the results on this note, see [2, 3]. An alternative
proof of Proposition 2 is given by Gordon and Luecke [8, Appendix A.2] in
a more general setting.

2. non-hyperbolic twisting pairs

We consider successively that the twisting pair (K, D) is Seifert fibered
and toroidal.
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2.1. Proof of Proposition 1. If E(K, C) is a Seifert fibered space, then
E(C) is a (p, q)-fibered solid torus, in which K is a regular fiber, and p = 1
(K is unknotted). Therefore, KD,n is a (1 + nq, q)-torus knot in S3. �

2.2. Sketch of the proof of Theorem 3. Let T be an essential 2-torus
in E(K, C), where C = ∂D.

If KD,n is not satellite then T separates ∂N(K) and ∂N(C). Indeed, if T
does not separate ∂N(K) and ∂N(C), then T bounds a solid torus V , which
contains K ∪C; furthermore V is knotted in S3. There is a 3-ball BK (resp.
BC) in V which contains K (resp. C) but no 3-ball which contains K ∪ C.
Then windV (KD,n) = windV (K) = 0 (algebraic intersection number with a
meridian disk of V ) so KD,n is not the core of V . If KD,n lies in a 3-ball in
V , by Scharlemann results [17] about reducing Dehn surgeries on knots in
solid tori, we get that C is a cable and that | −1

n | is an integer bigger than
one; a contradiction. Therefore, KD,n is a satellite knot.

Thus, we may assume that T separates ∂N(K) and ∂N(C) : S3 = V ∪T

W , where V,W are unknotted solid tori and K ⊂ V , C ⊂ W . Let ` be the
core of V ; note that | ` ∩D |≥ 2 (because T is not parallel to ∂N(C)).

Therefore, (`,D) is a twisting pair. If `D,n is knotted then KD,n is a satel-
lite knot with companion knot `D,n. By [13] or [12], if `D,n is unknotted then
the twisting pair is described on the figure above, with the corresponding
integer n.

Now, we note that :

(1) if | n |> 1 then KD,n is a satellite knot, and
(2) KD,1 = KDV ,4 and KD,−1 = KDV ,−4, where DV is a meridian disk

of V .

The geometric type of V −intN(K) is the one of the twisting pair (K, DV );
therefore (ii) follows by (1) above, Proposition 1 and Theorem 2 for the
hyperbolic twisting pairs. �

3. Sketch of the proof of Proposition 2

We need to recall some basic definitions and properties about Dehn surg-
eries on knots and twisted knots.

3.1. Dehn surgeries and twisted knots. Let k be a knot in S3, and α
a slope (isotopy class of unoriented simple closed curve) on ∂E(k). A α-
Dehn surgery on k is gluing a solid torus V to E(k) in such a way that a
meridian disk of V is attached to E(k) along the slope α : k(α) = E(k)(α) =
E(k)

⋃
α=m

(S1×D2), where m is the boundary slope of a meridian disk of V .

The slopes are parametrized by Q ∪ {∞} as usual. A slope α is denoted
by p

q if α ≡ pµ + qλ in H1(∂E(k)), where µ is a meridian and λ a prefered
longitude of k; note that (µ, λ) is a basis of H1(∂E(k)).
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Let (K, D) be a twisting pair, and C = ∂D. We denote by Mn the
3-manifold obtained by a −1

n -Dehn surgery on C in E(K), where n is an
integer.

The twisted knot KD,n is the image of K after the − 1
n -Dehn surgery on

C; thus Mn
∼= E(KD,n). We denote by Cn the core of the attached solid

torus.
Note that M0 = E(K) ∼= S1 ×D2 and C0 = C.

3.2. Finding punctured surfaces. Let m̂D be a meridian disk of M0 =
E(K) ∼= S1 ×D2. Isotope m̂D so that d = # | m̂D ∩ C0 | is minimal. Since
E(K, C) is hyperbolic, we may note that d ≥ 2.

Let mD be the punctured disk m̂D ∩ E(K, C). By the minimality of d,
mD is an essential surface in E(K, C).

Let T̂ be an essential 2-torus in E(KD,n), such that t = # | T̂ ∩ Cn | is
minimal. Since E(K, C) is hyperbolic t 6= 0. Furthermore, T̂ is separating
so t is an even integer : t ≥ 2. Let T be the punctured 2-torus T̂ ∩E(K, C).
By the minimality of t, T is an essential surface in E(K, C).

3.3. Intersection graphs. Let (GD, GT ) ⊂ (m̂D, T̂ ) be a pair of intersec-
tion graphs, defined as follows.

The (fat) vertices of GD are the disk-components of m̂D − intmD in m̂D;
similarly, the vertices of GT are the disk-components of T̂−intT in T̂ . By an
isotopy, we may assume that mD and T are transverse and in general position
in E(K, C). Their intersection is the union of circles and arc-components.
The edges of GD (respectively GT ) are the arc-components of mD∩T in m̂D

(respectively T̂ ). For convenience, we often made the confusion between the
arc-components of mD ∩ T , and the corresponding edges in both graphs.

Assume that | n |≥ 2. Note that
| n |= ∆(1

0 , −1
n ), where ∆(1

0 , −1
n ) denotes the distance (minimal

geometric intersection number) between the slopes;
E(K, C) is hyperbolic;
1
0 is a boundary reducing slope;
−1
n is a toroidal slope.

By the results of Gordon and Luecke [7] about the distance between a re-
ducing slope and a toroidal slope on a hyperbolic manifold, we get that :
| n |= 2 and t = 2.

3.4. Edge class labels. Since GT contains exactly two vertices V1 and V2

say, there are at most four edge classes (isotopy classes up to homeomor-
phism of T̂ ) of edges in GT , which join V1 to V2; see the figure below. We
call α, β, θ, γ the edge class labels.

Let G be the subgraph of GD, with all the vertices and all the correspond-
ing edges in GT that join V1 to V2.
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Let f be a face of G. The support of f is the subgraph of GT consisting
of V1 ∪ V2 and the correspondiong edges on ∂f . Note that the support of a
face lies in an annulus in T̂ if and only if its boundary contains at most two
edge class labels; see the figure below.
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Let f be a disk face of G. We define ρ(f) to be the sequence of edge class
labels around ∂f (up to cyclic permutation) in the anticlockwise direction;
see the figure above. If ρ(f) = µxλ, for some µ, λ ∈ {α, β, γ, θ}, (where
µ 6= λ and x 6= 0) f is said to be primitive. The support of a primitive face
lies in an annulus in T̂ .

3.5. Black and white faces. The 2-torus T̂ separates S3 into two com-
ponents : V ∼= S1 ×D2 and S3 − V . We say that V is the black side and
S3 − V , the white side.

Since mD and T are essential in E(K, C), no circle component of mD ∩T
bounds a disk in mD (cut and paste arguments).

A face f of GD is said to be a black (resp. white) face if f lies in V (resp.
in S3 − V ). For convenience, in the following a face is considered to be a
disk-face.

3.6. Sketch of the proof of Proposition 2. Since T̂ is essential in Mn,
V is knotted and KD,n ⊂ intV . Let ` be the core of V (a companion of
KD,n).

By the Euler-Poincaré formula and a combinatorial analysis (see [6]) G
contains a disk face f of length 2 or 3; so f is primitive and its support lies in
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an annulus in T̂ . By the two following propositions, one part of Proposition
2 is satisfied according to f is black or white.

Proposition 3. If G contains a black face with the support lies in an an-
nulus in T̂ , then KD,n is a non-trivial cable of `.

Proposition 4. If G contains a white primitive face, then the companion
knot ` is a non-trivial torus knot.

To complete the proof, we need another disk face g with the opposite
colour of f . To be more precise, if f is white we need g to be black whose
support lies in an annulus in T̂ ; if f is black we need g to be white and
primitive. This is given by the two last propositions below.

Proposition 5.
i) All black faces of G are isomorphic, i.e. if g, h are black faces of G

then ρ(g) = ρ(h);
ii) If f is black then G contains a white primitive face.

Proposition 6.
i) G cannot contain two white primitive faces with exactly one edge class

label in common.
ii) If f is white then G contains a black face, whose support lies in an

annulus in T̂ .

We finish by giving the ideas for proving these four propositions. We
denote respectively by Hb,Hw the black and white handles, i.e. the inter-
section of the attached solid torus in Mn, with the black side V , or the white
side S3 − V .

3.6.1. Proposition 3. Let X1 = N(A∪Hb∪f) pushed slightly inside V . Note
that ∂X1 is a 2-torus, which contains A. Let B be the annulus ∂X1 − A;
see the figure below.

X1

X2

A

B

A'=T-A
^

f

Hb

V=X  U  X
1 2B

K
D,n

Since KD,n is not a composite knot (by [5, 9]) then A is not a meridonal
annulus of V . Moreover, E(K, C) is hyperbolic, so the annulus B is parallel
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to A′. Then X2 is a solid torus and KD,n is a core of X2. Therefore, KD,n

is a non-trivial cable of `.

3.6.2. Proposition 4. Let X1 = N(A ∪ Hw ∪ f) pushed slightly oustide V .
Note that ∂X1 is a 2-torus, which contains A. Let B be the annulus ∂X1−A;
see the figure below.

V

X1

X2

A

B

A'=T-A^

Hw

S -V=X  U  X1 2
3

B

Assume that f is primitive, i.e. ρ(f) = µxλ for some edge class labels
µ, λ (with µ 6= λ and x a positive integer). Note that N(A)∪Hw is a genus
2 handlebody. Let m1 be the co-core of Hw and m2 be a meridian disk of
N(A). Then # | ∂f ∩m2 |= 1 so ∂f is a primitive curve on ∂(N(A) ∪Hw)
(this is the reason we choose ‘primitive’as a word for such faces) and X1 is
a solid torus.

Since KD,n is not a composite knot and E(K, C) is hyperbolic, X2 is also
a solid torus.

Finally, V is a knotted solid torus, so S3 − V 6∼= S1 ×D2 and S3 − V =
X1 ∪B X2; thus S3 − V is a Seifert fibered space over a disk with two
exceptional fibers, and ` is a non-trivial torus knot.

3.6.3. Proposition 5. (i) Let W = V − intN(KD,n)−Hb; then ∂W = ∂W+
∐

∂W−, where ∂W+ = T ∪ (∂Hb − T̂ ) and ∂W− = ∂N(KD,n).
Let g a black disk face of G, then ∂g is a non-separating simple closed

curve in ∂W+.
Since E(K, C) hyperbolic, W ∼= ∂N(KD,n) × [0, 1] ∪ N(f); so W is a

compression body, and g is the unique non-separating disk on W up to
isotopy. Therefore, if g, h are two black disk faces of G, then g and h

are isotopic on W , so ∂g and ∂h are freely homotopic in T̂ ∪ Hb. Now,
π1(T̂ ∪Hb) ∼= π1(T̂ ) ∗ Z ⇒ ρ(f) = ρ(g).

(ii) By (i) we may assume that the black faces of G all are isomorphic
bigons (disk faces of length two) or isomorphic trigons (disk faces of length
three). We conclude by a combinatorial analysis of G with this observation.

3.6.4. Proposition 6. (i) Since f a white primitive face of G, there exists Af

an annulus in T̂ , which contains the support of f ; let af be the core of Af .
Similarly for g another white primitive face of G, Ag denotes an annulus in
T̂ , which contains the support of g and ag denotes the core of Ag.



KNOTS OBTAINED BY TWISTING UNKNOTS 9

Since S3 − V is a Seifert fibered space over a disk with two exceptional
fibers, S3 − V contains a unique properly embedded essential annulus (up
to isotopy) A say. Note that the core of A has to be parallel to af and
ag. Therefore, # | af .ag |= 1 is impossible, which implies that ∂f and ∂g
cannot have a single edge class label in common.

(ii) Since f is length two or three, we may interchange the edge class
labels if necessary to get that ρ(f) = αβn, with n = 1 or 2.

Remark 1. The graph G does not contain a face, with a single edge class
label on its boundary.

Proof. Let h be a face with a single edge class label on its boundary.
Then its support lies in a disk B say in T̂ . Let X = N(B∪h∪H), where H
is the black or white handle, according to h is black or white respectively.
Then X is a punctured non-trivial lens space in S3; a contradiction. �

Let Γ be a dual graph with oriented edges, defined as follows. We consider
a dual vertex on each face of G. Now, for each edge e of G, we consider a
dual edge transverse to e and joining the dual vertices on the opposite side
of e. Moreover, we orient the dual edges from the black face to the white
face if e is a α-edge or a γ-edge; otherwise we orient the dual edge in the
opposite (from the white face to the black face); see the figure below.

edge

α, γ β, θ

e, edge of G
e

dual vertex dual

Note that a sink (or source) of Γ is a face g of G such that :
(1) there are exactly (by Remark 1) two edge class labels on ∂g;
(2) ∂g and ∂f contain a single edge class label in common.

A combinatorial analysis leads to prove that Γ contains a sink (or source)
which correspond to a black face or a white primitive face of G, g say. By
(i) and (2) g is black, and by (1) its support lies in an annulus in T̂ .
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10 MOHAMED AÏT-NOUH, DANIEL MATIGNON AND KIMIHIKO MOTEGI

7. C. McA. Gordon and J. Luecke; Toroidal and boundary-reducing Dehn fillings, Topol-
ogy Appl. 93 (1999), 77-90.

8. C. McA. Gordon and J. Luecke; Non-integral toroidal Dehn surgeries, preprint.
9. C. Hayashi and K. Motegi; Only single twist on unknots can produce composite knots,

Trans. Amer. Math. Soc. 349 (1997), 4465-4479.
10. W. Jaco and P. B. Shalen; Seifert fibered spaces in 3-manifolds, Mem. Amer. Math.

Soc. 220, 1979.
11. K. Johannson; Homotopy equivalences of 3-manifolds with boundaries, Lect. Notes in

Math. vol. 761, Springer-Verlag, 1979.
12. M. Kouno, K. Motegi and T. Shibuya; Twisting and knot types, J. Math. Soc. Japan

44 (1992) 199-216.
13. Y. Mathieu; Unknotting, knotting by twists on disks and property (P) for knots in S3,

Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related
Topics, de Gruyter (1992), 93-102

14. K. Miyazaki and K. Motegi; Seifert fibered manifolds and Dehn surgery III, Comm.
Anal. Geom. 7 (1999), 551-582.

15. K. Motegi and T. Shibuya; Are knots obtained from a plain pattern always prime ?
Kobe J. Math. 9 (1992), 39-42.

16. Y. Ohyama; Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid
7 (1994), 289–305.

17. M. Scharlemann; Producing reducible 3-manifolds by surgery on a knot, Topology 29
(1990), 481-500.

18. M. Teragaito; Composite knots trivialized by twisting, J. Knot Theory Ramifications
1 (1992), 1623-1629.

19. W. P. Thurston; The geometry and topology of 3-manifolds, Lecture notes, Princeton
University, 1979.

20. Y-Q. Wu; Dehn surgery on arborescent links, Trans. Amer. Math. Soc. 351 (1999),
2275-2294.
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