6.2 Sequence alignment algorithms

6.2.1 Dot-matrix analyss

The first computer aided sequence comparison is caled "dot-matrix andyss' or smply dot-plot.

The firgt published account of this method is by Gibbs and Mclntyre (1970 The diagram, a
method for comparing sequences. Eur. J. Biochem 16: 1-11). Brigfly, this method involves
congtructing a matrix with one of the sequences to be compared running horizontaly across the

bottom, and the other running verticdly aong the left-hand side. Each entry of the matrix is a
measure of Smilarity of those two residues on the horizonta and vertical sequence. In the Gibbs
and Mclntyre paper, they use the smplest scoring system, distinguishes only between identical

(dots) and non-identical (blank) residues. However, one can aso use graded measures that give

chemicaly smilar pairs of bases higher amilarity scores such as the BLOSUM and PAM

matrices and enter a dot whenever the smilarity exceeds a prescribed vaue.

Similar sequences tend to have many identicad or chemicaly related resdues dong the main
diagond; hence conspicuous diagond runs of dots Sgnd regions of amilarity. Smple asit is, dot
matrix andyssis gill apopular tool for researchersto visudly inspect the smilarity between two
sequences. It is often used as a first examination. From its output, the researcher can pick out
regions from the two sequences on which more detailed dignment will be performed.

Mazd and Lenk (1981 "Enhanced Grgphic Matrix Analyss of Nucleic Acid and Protein
Sequences’, Proc. Natl. Acad. Sci. USA 78; 7665-7669) generalize the original ideas of Gibbs
and Mcintyre. At every base of the two sequences, a window of fixed sizeislaid down. A dot
will be entered in the matrix if the total smilarity score of the two windowed fragments exceeds
a prescribed threshold. Thear dgorithm is implemented in the GCG program "compare'. The
output of compare can be fed into the "dot-plot” program to draw the dot-matrix. Figure 6.2 is
the dot-plot output of the amino acid sequences of the human hemoglobin a and b chains.

March 9, 2001 16:13
143

ty: 169.32

beta.aa ck: 3,588, 1 to 147

Figure 6.2 The dot-plot output of the amino acid sequences of the human hemoglobin dpha and
beta chain.



6.2.2 The dynamic programming agorithm

In 1970, Needleman and Wunsch (1970, A genera method gpplicable to the search for
gmilarities in the amino acid sequence of two proteins. J. Mol. Biol., 48: 443 - 453) introduce
an degant dgorithm for comparing two proteins sequences. This genera dgorithm works aso
for digning nucleic acid sequences as well. The dgorithm actudly belongs to a very large class
of dgorithms for finding optima solutions. The essence of the dgorithm is a technique known as

dynamic programming.

For any letter sequence s, the segment of the sequence conssing of the letters from the
beginning of the sequence up to theith letter in the sequence is caled a prefix, and it is denoted
by §1..i]. The dynamic programming technique basicdly tries to find the optima aignment by
taking advantage of the optima dignments dready found for the prefixes of the sequence.
Suppose s and t are two sequences of Sze m and n respectively, there are m+1 possible
prefixesof s and n+ 1 prefixes of t, induding the empty dring. To explain the cdculations, we
arange our caculaions in an (m+1) x (n+1) where entry (i, j) contains the Smilarity between
the prefixes 9 1..i] and t[1..j].

Let usillugrate the dynamic programming agorithm usng an example. We shdl try to dign the
two DNA sequences s= AGTCA and t = GCTC with m =5 and n = 4. Every base match
receives a Smilarity score or +1 and every mismatch -1. The gap pendty function is chosen to
be w(k) = -1-2k, wherek is the length of the gap. In other words, a pendty of -3 will be given
to agap of length 1, and the penalty increase by multiples of 2 as the gap lengthens.

A A G T C A

0 1 2 3 = 5

Q=060 >
2 P = D

Figure 6.3 Dynamic programming adgorithm for globd aignment

We place sontop and t dong the left margin of a rectangular array. A specid character "' is
introduced to indicate that the sequence will begin a the next postion. The @ row and @
column are initidized with the gap pendty function with k being the length of the "gap" that has
to be inserted at the beginning of ether sequence. For ingtance, cel (0,3) has a vaue -7
because having the O" character "' of sequence t lining up with the 3° character "G" of
sequence s, producing agap of length 3 at the beginning of the dignment like this



AGT ..

The gap penalty, accordingly, is-1-2(3) = -7.

For the rest of the array, cdl (i, j) will befilled the entry with the amount of amilarity am(g1..i],
t[1..;]) between the prefixes §1..i] and t[1..j] computed recursively. Suppose we have dready
filled the entries at (i-1, j), (i-1, j-1), (i, j-1). Then we can compute
i Sm(Li] L. j - K)) +w(k); k=1..j-1
(6.1) sm(dq1.i],t[1..j]) = max:' sm(g1.i - 1,t[1..j - 1]) + p(, j)
Lem(gL.i - K, L.j]) + Wk); k=1..,i-1

The reason is that there are just these possble ways of obtaining an dignment between g 1..i]
and t[1..j]:

(A) Align 9[1..i] and t[1..j-k] and match the last space in a gap with length k with t[j], or

(B) Align §1..i-1] and t[1..j-1], and match gi] with t[j], or

(©) Align g[1..i-K] and t[1..j], and match i] with the last space in agap with length k.

These possihilities are exhaustive because we cannot have two spaces paired in the last column
of the dignment. Scores of the best dignments between smaller prefixes are dready stored in
the array if we choose an appropriate order in which to compute the entries (e.g., fill the array
row by row, left to right in each row; or fill the array column by column, top to bottom on each
column).

As we enter each entry in the array following equation (6.1), we draw an arrow to indicate
where the maximum vaue comes from. For indance, the value of sm[1,3] was taken as the
maximum among the following numbers

sm[1,2] -3=-2-3=-5
sm[1,1] -5=-1-5 =-6
sm[0,2] -1=-5+1=-6
sm[0,3] -3=-7-3=-10

The maximum vaue comes from entry (1,2), and that is where the arrow shows. If there are
more than one way of getting the maximum, we put arrows to indicate dl the possbilities. See,
for example, entry (2,1).

After the array has been completely filled, we find the best dignment by tracing back aong the
arrows. We gart a the bottom right corner of the array and move according to the direction of
the arrow. The best dignment we get from Figure 6.3 is



AGTCA

S

GCTC_
When there are multiple arrows emanating from an entry, we can follow any one of them. So it
is possible to have more than one optima aignment. Most computer programs for sequence
adignment will report dl different optima aignments. It is important to note that an optimd
dignment is optima only for the particular smilarity score matrix and the gap pendty functions.
When any of theseisdtered, the optimd dignment will dso change.

The GCG program "Gap" uses the above agorithm to find the best globd dignment of two
sequences.

Exercise With the same similarity scoring scheme, and gap pendty as in the example above, find
the best dignment between the pair of DNA sequencesin the beginning of this section.

In the description above, we try to find an aignment that gives an overdl best smilarity scores
between the entirety of the two sequences. This is cdled an optima global alignment. At
times, our am isto find the best ssgments from the given pair of the sequences that lines up best
with each other. This is caled an optima local alignment. Locd dignments are particularly
useful when anew sequenceis just obtained from the laboratory. The researcher would firgt like
to identify any parts of the sequence that have high smilarity to known functiona domains. The
popular database search program BLAST uses alocd dignment dgorithm.

The dynamic programming locd dignment agorithm was developed in the early 1980's (Smith
and Waterman 1981) and is frequently referred to as the Smith- Waterman agorithm. It shares
the same basic concepts with the globa dgorithm, differing only in afew detalls.

Firg, an extra posshbility is added to equation (6.1), dlowing sm(g1..i], t[1..j]) to take the
vaueif dl other options have vdue lessthan 0. That is,

i0
ESm(gLi], 41 - K]) +w(k); k=1..j-1
FSm(SLd - 1,t[L.j - ) + p(i, )

fsm(gL.i- KL L.j]) +WKk); k=1..i-1

sm(gL.4],t[L..j]) = max

Consequently, the top row and left column of the array in Figure 6.3 will now be filled with O's
ingtead of the w(k)'s as in globd aignment. Taking the option O corresponds to sarting a new
adignment. Since we are only looking for aloca dignment, the dignment can sart anywhere in
the two sequences. So, if the best dignment up to a certain point has a negative score, it is
better to start anew one at that point.



Second, the alignment can end anywhere in the sequences. So, instead of starting the traceback
from the bottom right corner, we look for the highest smilarity vaue in the array and dart the
traceback from there. The traceback ends when we meet a cdl with vaue O, which
corresponds to the start of the alignment.

If we follow equation (6.2) to find the best loca dignment to the same pair of sequences s and
t. We will have the array in Figure 6.4, which indicates that the best loca dignment between
these two sequences is the match of two nucleotide bases TC in the 3% and 4™ positions of both
sequences.

A A G T C A

0 1 2 3 4 5
A0 |lo0o 0,,0 0 0 0
G1lo 01 0o 0 o
c2l0 0 0—~0 0 0
T30 0 0 0 0
c4lL0 0 0 0 0|

Figure 6.4 Dynamic programming agorithm for locd dignment

The GCG programs that use dynamic programming agorithms for locd pairwise sequence
dignments are BestFit and FrameAlign.



