

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

Natasha Sharma, Ph.D.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Newton's Law of Cooling

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

Example

Suppose that in the winter the daytime temperature in a certain office is maintained at 70 degrees F. The heating is shut off at 10 pm and turned on again at 6 am. On a certain day the temperature inside the building at 2 am was found to be 65 degrees F. The outside temperature was 50 degrees at 10 pm and dropped to 40 degrees F by 6 am. What is the temperature in the building when the heat was turend on at 6 am?

Experimental data: Experiments show that the time rate of change of temperature T of a body B is proportional to the difference between T and the temperature of the surrounding medium.(Newton's Law of Cooling)

$$\frac{dT}{dt} = k(T - T_A)$$

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

1 How to pick T_A ?

Rule: If we cannot solve the exact mathematical problem, try to solve a simpler problem!

2 What is the form of the ODE?

3 $T(t) = T_A + ce^{kt}$ solves the ODE. (Verify!)

Numeical Solutions to IVP

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

Suppose we wish to approximate the solutions to the following IVP:

$$\frac{du(t)}{dt} = F(t, u(t)) \tag{1}$$

$$u(0) = u_0,$$
 (2)

Our task is to obtain a numerical approximation to the solution u to (1)–(2) at some positive time t where $0 \le t \le T$.

Numeical Solutions to IVP

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

Since the computers cannot store or understand continuous time, we need to discretize the time interval [0, T] into say N + 1 "time screenshots" where we choose to solve for u(t). We set

$$\Delta t = \frac{I}{N}$$

and let $t_0 = 0$, $t_1 = \Delta t$, $t_2 = 2\Delta t$, $cdotst_N = T$. We need to find a way to fill in the table

Time Screenshot	Approximation	
$0 = t_0$	$u_0 = u(0)$	
$\Delta t = t_1$	$u_1 = u(\Delta t)$	
$2\Delta t = t_2$	$u_2 = u(2\Delta t)$	
$3\Delta t = t_3$	$u_3 = u(3\Delta t)$	
:	:	
$N\Delta t = T$	$u_N = u(T)$	
		50

Euler Scheme

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

$$\frac{du(t)}{dt} = F(t, u(t))$$
$$u(0) = u_0.$$

Replace $\frac{du(t)}{dt}$ by its numerical derivative $D_{\Delta t}(u)(t)$ wrt the discretization of [0, T] that we introduced.

$$D_{\Delta t}(u)(t)pprox rac{u(t+\Delta t)-u(t)}{\Delta t}$$

so that the Euler Scheme is

$$u(0) = u_0,$$

 $\frac{u(t + \Delta t) - u(t)}{\Delta t} = F(t^*, u(t^*)),$

where $t^* = t$ or $t^* = t + \Delta t$.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Euler Scheme

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

$$u(t + \Delta t) = u(t) + \Delta t F(t^*, u(t^*)).$$

If $t^* = t$, the Euler scheme is called Explicit or Forward Euler Scheme.

If $t^* = t + \Delta t$, the Euler scheme is called Implicit or Backward Euler Scheme.

Let us use Maxima to solve the IVPs we have encountered so far.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Euler Scheme: In-Class Activity

Modeling using ODEs: Newton's Law of Cooling and Numerical Methods for solving ODE

> Natasha Sharma, Ph.D.

- **1** Download the code ode_solver.mac.
- 2 Your task is to figure out which ODE does this code solve?
- 3 Does it use Euler Forward or Backward Method?
- 4 How can you modify the code to solve other ODEs using both the methods for different time steps?