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Newton’s Law of Cooling

Example

Suppose that in the winter the daytime temperature in a
certain office is maintained at 70 degrees F. The heating is
shut off at 10 pm and turned on again at 6 am. On a certain
day the temperature inside the building at 2 am was found to
be 65 degrees F. The outside temperature was 50 degrees at 10
pm and dropped to 40 degrees F by 6 am.
What is the temperature in the building when the heat was
turend on at 6 am?

Experimental data: Experiments show that the time rate of
change of temperature T of a body B is proportional to the
difference between T and the temperature of the surrounding
medium.(Newton’s Law of Cooling)

dT

dt
= k(T − TA)
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1 How to pick TA?
Rule: If we cannot solve the exact mathematical problem,
try to solve a simpler problem!

2 What is the form of the ODE?

3 T (t) = TA + cekt solves the ODE. (Verify!)
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Numeical Solutions to IVP

Suppose we wish to approximate the solutions to the following
IVP:

du(t)

dt
= F (t, u(t)) (1)

u(0) = u0, (2)

Our task is to obtain a numerical approximation to the solution
u to (1)–(2) at some positive time t where 0 ≤ t ≤ T .
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Numeical Solutions to IVP

Since the computers cannot store or understand continuous
time, we need to discretize the time interval [0,T ] into say
N + 1 “time screenshots” where we choose to solve for u(t).
We set

∆t =
T

N
and let t0 = 0, t1 = ∆t, t2 = 2∆t, cdotstN = T . We need to
find a way to fill in the table

Time Screenshot Approximation

0 = t0 u0 = u(0)

∆t = t1 u1 = u(∆t)

2∆t = t2 u2 = u(2∆t)

3∆t = t3 u3 = u(3∆t)
...

...

N∆t = T uN = u(T )
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Euler Scheme

du(t)

dt
= F (t, u(t))

u(0) = u0.

Replace du(t)
dt by its numerical derivative D∆t(u)(t) wrt the

discretization of [0,T ] that we introduced.

D∆t(u)(t) ≈ u(t + ∆t) − u(t)

∆t

so that the Euler Scheme is

u(0) = u0,

u(t + ∆t) − u(t)

∆t
= F (t∗, u(t∗)),

where t∗ = t or t∗ = t + ∆t.
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Euler Scheme

u(t + ∆t) = u(t) + ∆tF (t∗, u(t∗)).

If t∗ = t, the Euler scheme is called Explicit or Forward Euler
Scheme.
If t∗ = t + ∆t, the Euler scheme is called Implicit or Backward
Euler Scheme.
Let us use Maxima to solve the IVPs we have encountered so
far.
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Euler Scheme: In-Class Activity

1 Download the code ode solver.mac.

2 Your task is to figure out which ODE does this code solve?

3 Does it use Euler Forward or Backward Method?

4 How can you modify the code to solve other ODEs using
both the methods for different time steps?


