You may use a calculator and the formula sheets at the end of the exam. You must show all of your work to receive full credit for a problem. Correct answers without supporting work will receive no credit!

- 1) Find the indefinite integral. $\int x^3 \sqrt{4-x^2} dx$
- 2) Find the limit. $\lim_{x \to \infty} x^{1/x}$
- 3) A cylindrical tank is 10 feet high with a diameter of 4 feet. The tank is buried upright so that the top of the tank is 2 feet underground. The tank is full of oil with a weight density of 100 pounds per cubic foot. How much work is required to pump all of the oil from the tank to the ground level?
- 4) Evaluate the improper integral, if possible.

$$\int_{0}^{\infty} \frac{1}{(3x+1)^3} dx$$

- 5) Find the indefinite integral. $\int (2x+1)e^{3x} dx$
- 6) Find the interval of convergence for the power series. $\sum_{n=1}^{\infty}$

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{3n+2}$$

Don't forget to check the endpoints of the interval!

- 7) Consider the region bounded by $y=1-\sqrt{x^3}$, the *x*-axis, and the *y*-axis. Find the volume of the solid obtained by rotating this region about the *x*-axis.
- 8) Write the series using sigma notation, then find the sum of the series, if possible. $\frac{-2}{3} + \frac{4}{9} - \frac{8}{27} + \frac{16}{81} - \dots$

Extra Credit: Find the following integral (all work must be shown, including any factoring that may be necessary):

$$\int \frac{6x^2 - 31x + 57}{x^3 - 7x^2 + 19x - 13} dx$$

DERIVATIVES AND INTEGRALS

Basic Differentiation Rules

1.
$$\frac{d}{dx}[cu] = cu'$$

4. $\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{vu' - uv'}{v^2}$
7. $\frac{d}{dx}[x] = 1$
10. $\frac{d}{dx}[e^u] = e^u u'$
13. $\frac{d}{dx}[e^u] = e^u u'$
14. $\frac{d}{dx}[\sin u] = (\cos u)u'$
15. $\frac{d}{dx}[\arctan u] = -(\csc^2 u)u'$
19. $\frac{d}{dx}[\operatorname{arccot} u] = \frac{u'}{\sqrt{1 - u^2}}$
22. $\frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1 + u^2}$
25. $\frac{d}{dx}[\operatorname{sinh} u] = (\cosh u)u'$
28. $\frac{d}{dx}[\operatorname{coth} u] = -(\operatorname{csch}^2 u)u'$
31. $\frac{d}{dx}[\sinh^{-1} u] = \frac{u'}{\sqrt{u^2 + 1}}$
34. $\frac{d}{dx}[\operatorname{coth}^{-1} u] = \frac{u'}{1 - u^2}$

2. $\frac{d}{dx}[u \pm v] = u' \pm v'$ 3. $\frac{d}{dx}[uv] = uv' + vu'$ 5. $\frac{d}{dx}[c] = 0$ 6. $\frac{d}{dx}[u^n] = nu^{n-1}u'$ 8. $\frac{d}{dx}[|u|] = \frac{u}{|u|}(u'), \quad u \neq 0$ 9. $\frac{d}{dx}[\ln u] = \frac{u'}{u}$ 11. $\frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$ 12. $\frac{d}{dx}[a^u] = (\ln a)a^uu'$ 14. $\frac{d}{dx}[\cos u] = -(\sin u)u'$ 15. $\frac{d}{dx}[a^u] = (\ln a)a^uu'$ 16. $\frac{d}{dx}[\cos u] = (\sec u \tan u)u'$ 17. $\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$ 18. $\frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$ 20. $\frac{d}{dx}[\arccos u] = \frac{-u'}{\sqrt{1-u^2}}$ 21. $\frac{d}{dx}[\arctan u] = \frac{u'}{1+u^2}$ 23. $\frac{d}{dx}[\arccos u] = \frac{u'}{|u|\sqrt{u^2-1}}$ 24. $\frac{d}{dx}[\operatorname{arccs} u] = \frac{-u'}{|u|\sqrt{u^2-1}}$ 26. $\frac{d}{dx}[\cosh u] = (\sinh u)u'$ 27. $\frac{d}{dx}[\tanh u] = (\operatorname{sech}^2 u)u'$ 29. $\frac{d}{dx}[\operatorname{sech} u] = -(\operatorname{sech} u \tanh u)u'$ 30. $\frac{d}{dx}[\operatorname{csch} u] = -(\operatorname{csch} u \coth u)u'$ 32. $\frac{d}{dx}[\cosh^{-1} u] = \frac{u'}{\sqrt{u^2-1}}$ 33. $\frac{d}{dx}[\tanh^{-1} u] = \frac{u'}{|u|\sqrt{1+u^2}}$ 35. $\frac{d}{dx}[\operatorname{sech}^{-1} u] = \frac{-u'}{u\sqrt{1-u^2}}$ 36. $\frac{d}{dx}[\operatorname{csch}^{-1} u] = \frac{-u'}{|u|\sqrt{1+u^2}}$

Basic Integration Formulas

1.
$$\int kf(u) \, du = k \int f(u) \, du$$
2.
$$\int [f(u) \pm g(u)] \, du = \int f(u) \, du \pm \int g(u) \, du$$
3.
$$\int du = u + C$$
4.
$$\int a^u \, du = \left(\frac{1}{\ln a}\right) a^u + C$$
5.
$$\int e^u \, du = e^u + C$$
6.
$$\int \sin u \, du = -\cos u + C$$
7.
$$\int \cos u \, du = \sin u + C$$
8.
$$\int \tan u \, du = -\ln|\cos u| + C$$
9.
$$\int \cot u \, du = \ln|\sin u| + C$$
10.
$$\int \sec u \, du = \ln|\sec u + \tan u| + C$$
11.
$$\int \csc u \, du = -\ln|\csc u + \cot u| + C$$
12.
$$\int \sec^2 u \, du = \tan u + C$$
13.
$$\int \csc^2 u \, du = -\cot u + C$$
14.
$$\int \sec u \tan u \, du = \sec u + C$$
15.
$$\int \csc u \cot u \, du = -\csc u + C$$
16.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$
17.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$
18.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$$

C Houghton Mifflin Company, Inc.

© Houghton Mifflin Company, Inc.

SUMMARY OF TESTS FOR SERIES

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
nth-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	r < 1	$ r \ge 1$	Sum: $S = \frac{a}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty} b_n = L$		Sum: $S = b_1 - L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	0	
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$	E A TO	Remainder: $ R_N \le a_{N+1}$
Integral (<i>f</i> is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n,$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx \text{ converges}$	$\int_{1}^{\infty} f(x) dx \text{ diverges}^{\mathbb{M}}$	Remainder: $0 < R_N < \int_N^\infty f(x) dx$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1 \text{ or}$ $= \infty$	Test is inconclusive if $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1.$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \frac{ a_{n+1} }{a_n} > 1 \text{ or}$ $= \infty$	Test is inconclusive if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Direct Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges	
Limit Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ converges	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges	