Applications of Integration

Copyright © Cengage Learning. All rights reserved.

7.4
 Arc Length and Surfaces of Revolution

Objectives

- Find the arc length of a smooth curve.
- Find the area of a surface of revolution.

Arc Length

Arc Length

Definite integrals are use to find the arc lengths of curves and the areas of surfaces of revolution.

In either case, an arc (a segment of a curve) is approximated by straight line segments whose lengths are given by the familiar Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

A rectifiable curve is one that has a finite arc length.

Arc Length

You will see that a sufficient condition for the graph of a function f to be rectifiable between ($a, f(a)$) and ($b, f(b)$) is that f^{\prime} be continuous on $[a, b]$.

Such a function is continuously differentiable on $[a, b]$, and its graph on the interval $[a, b]$ is a smooth curve.

Arc Length

Consider a function $y=f(x)$ that is continuously differentiable on the interval $[a, b]$. You can approximate the graph of f by n line segments whose endpoints are determined by the partition $\mathrm{a}=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b$ as shown in Figure 7.37.

Arc Length

By letting $\Delta x_{i}=x_{i}-x_{i-1}$ and $\Delta y_{i}=y_{i}-y_{i-1}$, you can approximate the length of the graph by

$$
\begin{aligned}
s & \approx \sum_{i=1}^{n} \sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}} \\
& =\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}} \\
& =\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}\left(\Delta x_{i}\right)^{2}} \\
& =\sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}}\left(\Delta x_{i}\right) .
\end{aligned}
$$

This approximation appears to become better and better as $\|\Delta\| \rightarrow 0(n \rightarrow \infty)$.

Arc Length

So, the length of the graph is

$$
s=\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}}\left(\Delta x_{i}\right) .
$$

Because $f^{\prime}(x)$ exists for each x in $\left(x_{i-1}, x_{i}\right)$, the Mean Value Theorem guarantees the existence of c_{i} in $\left(x_{i-1}, x_{i}\right)$ such that

$$
\begin{aligned}
f\left(x_{i}\right)-f\left(x_{i-1}\right) & =f^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right) \\
\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}} & =f^{\prime}\left(c_{i}\right) \\
\frac{\Delta y_{i}}{\Delta x_{i}} & =f^{\prime}\left(c_{i}\right) .
\end{aligned}
$$

Arc Length

Because f^{\prime} is continuous on $[a, b]$, it follows that $\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$ is also continuous (and therefore integrable) on $[a, b]$, which implies that

$$
\begin{aligned}
s & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}}\left(\Delta x_{i}\right) \\
& =\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

where s is called the arc length of f between a and b.

Arc Length

Definition of Arc Length

Let the function $y=f(x)$ represent a smooth curve on the interval $[a, b]$. The arc length of f between a and b is

$$
s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x .
$$

Similarly, for a smooth curve $x=g(y)$, the arc length of g between c and d is

$$
s=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y .
$$

Example 1 - The Length of a Line Segment

Find the arc length from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ on the graph of $f(x)=m x+b$, as shown in Figure 7.38.

The formula for the arc length of the graph of f from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is the same as the standard Distance Formula.

Example 1 - Solution

Because

$$
m=f^{\prime}(x)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

it follows that

$$
\begin{aligned}
s & =\int_{x_{1}}^{x_{2}} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& =\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}} d x \\
& =\sqrt{\left.\frac{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}(x)\right]_{x_{1}}^{x_{2}}}
\end{aligned}
$$

Example 1 - Solution

$$
\begin{aligned}
& =\sqrt{\frac{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}}\left(x_{2}-x_{1}\right) \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

which is the formula for the distance between two points in the plane.

Area of a Surface of Revolution

Area of a Surface of Revolution

```
Definition of Surface of Revolution
When the graph of a continuous function is revolved about a line, the resulting
surface is a surface of revolution.
```

The area of a surface of revolution is derived from the formula for the lateral surface area of the frustum of a right circular cone.

Area of a Surface of Revolution

Consider the line segment in the figure below, where L is the length of the line segment, r_{1} is the radius at the left end of the line segment, and r_{2} is the radius at the right end of the line segment.

Area of a Surface of Revolution

When the line segment is revolved about its axis of revolution, it forms a frustum of a right circular cone, with

$$
S=2 \pi r L
$$

Lateral surface area of frustum
where

$$
r=\frac{1}{2}\left(r_{1}+r_{2}\right) .
$$

Average radius of frustum

Area of a Surface of Revolution

Consider a function f that has a continuous derivative on the interval $[a, b]$. The graph of f is revolved about the x axis to form a surface of revolution, as shown in Figure 7.43.

Figure 7.43.

Area of a Surface of Revolution

Let Δ be a partition of $[a, b]$, with subintervals of width Δx_{i}. Then the line segment of length $\Delta L_{i}=\sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}}$ generates a frustum of a cone.

Let r_{i} be the average radius of this frustum.
By the Intermediate Value Theorem, a point d_{i} exists (in the i th subinterval) such that $r_{i}=f\left(d_{i}\right)$.
The lateral surface area ΔS_{i} of the frustum is

$$
\begin{aligned}
\Delta S_{i} & =2 \pi r_{i} \Delta L_{i} \\
& =2 \pi f\left(d_{i}\right) \sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}} \\
& =2 \pi f\left(d_{i}\right) \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}} \Delta x_{i} .
\end{aligned}
$$

Area of a Surface of Revolution

By the Mean Value Theorem, a point c_{i} exists in $\left(x_{i-1}, x_{i}\right)$ such that

$$
\begin{aligned}
f^{\prime}\left(c_{i}\right) & =\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}} \\
& =\frac{\Delta y_{i}}{\Delta x_{i}} .
\end{aligned}
$$

So, $\Delta S_{i}=2 \pi f\left(d_{i}\right) \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}} \Delta x_{i}$, and the total surface area
can be appro: $S \approx 2 \pi \sum_{i=1}^{n} f\left(d_{i}\right) \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}} \Delta x_{i}$.

Area of a Surface of Revolution

It can be shown that the limit of the right side as $\|\Delta\| \rightarrow 0(n \rightarrow \infty)$ is

$$
S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

In a similar manner, if the graph of f is revolved about the y-axis, then S is

$$
S=2 \pi \int_{a}^{b} x \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Area of a Surface of Revolution

In these two formulas for S, you can regard the products $2 \pi f(x)$ and $2 \pi x$ as the circumferences of the circles traced by a point (x, y) on the graph of f as it is revolved about the x-axis and the y-axis (Figure 7.44). In one case the radius is $r=f(x)$, and in the other case the radius is $r=x$.

Area of a Surface of Revolution

Definition of the Area of a Surface of Revolution

Let $y=f(x)$ have a continuous derivative on the interval $[a, b]$. The area S of the surface of revolution formed by revolving the graph of f about a horizontal or vertical axis is

$$
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad y \text { is a function of } x .
$$

where $r(x)$ is the distance between the graph of f and the axis of revolution. If $x=g(y)$ on the interval $[c, d]$, then the surface area is

$$
S=2 \pi \int_{c}^{d} r(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y \quad x \text { is a function of } y
$$

where $r(y)$ is the distance between the graph of g and the axis of revolution.

Example 6 - The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of $f(x)=x^{3}$ on the interval $[0,1]$ about the x-axis, as shown in Figure 7.45.

Example 6 - Solution

The distance between the x-axis and the graph of f is $r(x)=f(x)$, and because $f^{\prime}(x)=3 x^{2}$, the surface area is

$$
\begin{array}{rlr}
S & =2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x & \\
& =2 \pi \int_{0}^{1} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x & \\
& =\frac{2 \pi}{36} \int_{0}^{1}\left(36 x^{3}\right)\left(1+9 x^{4}\right)^{1 / 2} d x & \\
& =\frac{\pi}{18}\left[\frac{\left(1+9 x^{4}\right)^{3 / 2}}{3 / 2}\right]_{0}^{1} & \text { Simplify. } \\
& =\frac{\pi}{27}\left(10^{3 / 2}-1\right) & \\
& \approx 3.563
\end{array}
$$

