Applications of Integration

Copyright © Cengage Learning. All rights reserved.

7.5 Work

Objectives

- Find the work done by a constant force.
- Find the work done by a variable force.

Work Done by a Constant Force

Work Done by a Constant Force

In general, work is done by a force when it moves an object. If the force applied to the object is constant, then the definition of work is as follows.

Definition of Work Done by a Constant Force
If an object is moved a distance D in the direction of an applied constant force F, then the work W done by the force is defined as $W=F D$.

Work Done by a Constant Force

- There are many types of forces-gravitational, electromagnetic, strong nuclear, and weak nuclear.
- A force can be thought of as a push or a pull; a force changes the state of rest or state of motion of a body.
- For gravitational forces on Earth, it is common to use units of measure corresponding to the weight of an object.

Example 1 - Lifting an Object

Determine the work done in lifting a 50-pound object 4 feet.

Solution:

The magnitude of the required force F is the weight of the object, as shown in
Figure 7.46.
So, the work done in
lifting the object 4 feet is

$$
\begin{aligned}
W & =F D \quad \text { Work }=(\text { force })(\text { distance }) \\
& =50(4) \text { Force }=50 \text { pounds, distance }=4 \text { feet } \\
& =200 \text { foot-pounds }
\end{aligned}
$$

The work done in lifting a 50 -pound object 4 feet is 200 foot-pounds.

Work Done by a Constant Force

In the U.S. measurement system, work is typically expressed in foot-pounds (ft-lb), inch-pounds, or foot-tons.

In the International System of Units (SI), the basic unit of force is the newton - the force required to produce an acceleration of 1 meter per second per second on a mass of 1 kilogram. In this system, work is typically expressed in newton-meters, also called joules.

Work Done by a Constant Force

In another system, the centimeter-gram-second (C-G-S) system, the basic unit of force is the dyne-the force required to produce an acceleration of 1 centimeter per second per second on a mass of 1 gram.

In this system, work is typically expressed in dyne-centimeters (ergs) or newton-meters (joules), where 1 joule $=107$ ergs.

Work Done by a Variable Force

Work Done by a Variable Force

When a variable for is applied to an object, calculus is needed to determine the work done, because the amount of force changes as the object changes position.

For instance, the force required to compress a spring increases as the spring is compressed.

Work Done by a Variable Force

Consider an object that is moved along a straight line from $x=a$ to $x=b$ by a continuously varying force $F(x)$.

Let Δ be a partition that divides the interval $[a, b]$ into n subintervals determined by

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
$$

and let $\Delta x_{i}=x_{i}-x_{i-1}$. For each i, choose c_{i} such that

$$
x_{i-1} \leq c_{i} \leq x_{i} .
$$

Work Done by a Variable Force

Then at c_{i}, the force is $F\left(c_{i}\right)$. Because F is continuous, you can approximate the work done in moving the object through the ith subinterval by the increment

$$
\Delta W_{i}=F\left(c_{i}\right) \Delta x_{i}
$$

as shown in Figure 7.47. So, the total work done as the object moves from a to b is approximated

$$
\begin{aligned}
W & \approx \sum_{i=1}^{n} \Delta W_{i} \\
& =\sum_{i=1}^{n} F\left(c_{i}\right) \Delta x_{i} .
\end{aligned}
$$

$F(x)$

The amount of force changes as an object changes position (Δx).

Figure 7.47

Work Done by a Variable Force

This approximation appears to become better and better as $\|\Delta\| \rightarrow 0(n \rightarrow \infty)$. So, the work done is

$$
\begin{aligned}
W & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} F\left(c_{i}\right) \Delta x_{i} \\
& =\int_{a}^{b} F(x) d x .
\end{aligned}
$$

Work Done by a Variable Force

Definition of Work Done by a Variable Force

If an object is moved along a straight line by a continuously varying force $F(x)$, then the work W done by the force as the object is moved from

$$
x=a \quad \text { to } \quad x=b
$$

is given by

$$
\begin{aligned}
W & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \Delta W_{i} \\
& =\int_{a}^{b} F(x) d x
\end{aligned}
$$

Work Done by a Variable Force

The following three laws of physics were developed by Robert Hooke (1635-1703), Isaac Newton (1642-1727), and Charles Coulomb (1736-1806).
1.Hooke's Law: The force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is,

$$
F=k d
$$

where the constant of proportionality k (the spring constant) depends on the specific nature of the spring.

Work Done by a Variable Force

2. Newton's Law of Universal Gravitation: The force F of attraction between two particles of masses m_{1} and m_{2} is proportional to the product of the masses and inversely proportional to the square of the distance d between the two particles. That is,

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

If m_{1} and m_{2} are given in grams and d in centimeters, F will be in newtons for a value of
$G=6.67 \times 10^{-11}$ cubic meter per kilogram-second squared, where G is the gravitational constant.

Work Done by a Variable Force

3. Coulomb's Law: The force F between two charges q_{1} and q_{2} in a vacuum is proportional to the product of the charges and inversely proportional to the square of the distance d between the two charges. That is,

$$
F=k \frac{q_{1} q_{2}}{d^{2}}
$$

If q_{1} and q_{2} are given in electrostatic units and d in centimeters, F will be in dynes for a value of $k=1$.

Example 2 - Compressing a Spring

A force of 750 pounds compresses a spring 3 inches from its natural length of 15 inches. Find the work done in compressing the spring an additional 3 inches.

Solution:

By Hooke's Law, the force $F(x)$ required to compress the spring x units (from its natural length) is $F(x)=k x$.

Because $F(3)=750$, it follows that $F(3)=(k)(3) \quad 750=3 k \quad \Rightarrow 250=k$.

So, $F(x)=250 x$, as shown in Figure 7.48.

$$
\text { Natural length }(F=0)
$$

Figure 7.48

Example 2 - Solution

To find the increment of work, assume that the force required to compress the spring over a small increment Δx is nearly constant.
So, the increment of work is
$\Delta W=$ (force) (distance increment) $=(250 x) \Delta x$.
Because the spring is compressed from $x=3$ to $x=6$ inches less than its natural length, the work required is

$$
\begin{aligned}
W & \left.=\int_{a}^{b} F(x) d x=\int_{3}^{6} 250 x d x=125 x^{2}\right]_{3}^{6} \\
& =4500-1125=3375 \text { inch-pounds. }
\end{aligned}
$$

Example 2 - Solution

Note that you do not integrate from $x=0$ to $x=6$ because you were asked to determine the work done in compressing the spring an additional 3 inches the first 3 inches).
(not including

Work Done by a Variable Force

$$
\Delta W=(\text { force })(\text { distance increment })=(F)(\Delta x)
$$

Another way to formulate the increment of work is

$$
\Delta W=(\text { force increment })(\text { distance })=(\Delta F)(x) .
$$

This second interpretation of ΔW is useful in problems involving the movement of nonrigid substances such as fluids and chains.

Example 4 - Emptying a Tank of Oil

A spherical tank of radius 8 feet is half full of oil that weighs 50 pounds per cubic foot. Find the work required to pump oil out through a hole in the top of the tank.

Solution:

Consider the oil to be subdivided into disks of thickness Δy and radius x, as shown in Figure 7.50.

Figure $7 . .50$

Example 4 - Solution

Because the increment of force for each disk is given by its weight, you have $\Delta F=$ weight

$$
\begin{aligned}
& =\left(\frac{50 \text { pounds }}{\text { cubic foot }}\right)(\text { volume }) \\
& =50\left(\pi x^{2} \Delta y\right) \text { pounds }
\end{aligned}
$$

For a circle of radius 8 and center at (0,8), you have

$$
\begin{aligned}
x^{2}+(y-8)^{2} & =8^{2} \\
x^{2} & =16 y-y^{2}
\end{aligned}
$$

and you can write the force increment as

$$
\begin{aligned}
\Delta F & =50\left(\pi x^{2} \Delta y\right) \\
& =50 \pi\left(16 y-y^{2}\right) \Delta y .
\end{aligned}
$$

Example 4 - Solution

In Figure 7.50, note that a disk y feet from the bottom of the tank must be moved a distance of $(16-y)$ feet.

So, the increment of work is

$$
\begin{aligned}
\Delta W & =\Delta F(16-y) \\
& =50 \pi\left(16 y-y^{2}\right) \Delta y(16-y) \\
& =50 \pi\left(256 y-32 y^{2}+y^{3}\right) \Delta y .
\end{aligned}
$$

Figure 7.50

Example 4 - Solution

Because the tank is half full, y ranges from 0 to 8 , and the work required to empty the tank is

$$
\begin{aligned}
W & =\int_{0}^{8} 50 \pi\left(256 y-32 y^{2}+y^{3}\right) d y \\
& =50 \pi\left[128 y^{2}-\frac{32}{3} y^{3}+\frac{y^{4}}{4}\right]_{0}^{8} \\
& =50 \pi\left(\frac{11,264}{3}\right) \\
& \approx 589,782 \text { foot-pounds. }
\end{aligned}
$$

Example 4 - Solution

To estimate the reasonableness of the result in Example 4, consider that the weight of the oil tank is

$$
\left(\frac{1}{2}\right)(\text { volume })(\text { density })=\frac{1}{2}\left(\frac{4}{3} \pi 8^{3}\right)(50) \approx 53,616.5 \text { pounds }
$$

Lifting the entire half-tank of oil 8 feet would involve work of

$$
\begin{aligned}
W & =F D \\
& \approx(53,616.5)(8) \\
& =428,932 \text { foot-pounds. }
\end{aligned}
$$

Because the oil is actually lifted between 8 and 16 feet, it seems reasonable that the work done is about 589,782 foot-pounds.

