Integration Techniques, L'Hôpital's Rule, and Improper Integrals

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Review procedures for fitting an integrand to one of the basic integration rules.

Fitting Integrands to Basic Integration Rules

Fitting Integrands to Basic Integration Rules

REVIEW OF BASIC INTEGRATION RULES (a > 0)

1. $\int kf(u) \, du = k \int f(u) \, du$ 2. $\int [f(u) \pm g(u)] du =$ $\int f(u) du \pm \int g(u) du$ 3. $\int du = u + C$ 4. $\int u^n du = \frac{u^{n+1}}{n+1} + C$, $n \neq -1$ 5. $\int \frac{du}{u} = \ln|u| + C$ 6. $\int e^u du = e^u + C$ 7. $\int a^u du = \left(\frac{1}{\ln a}\right)a^u + C$ 8. $\int \sin u \, du = -\cos u + C$ 9. $\int \cos u \, du = \sin u + C$ 10. $\int \tan u \, du = -\ln|\cos u| + C$

- 11. $\int \cot u \, du = \ln |\sin u| + C$
- 12. $|\sec u \, du =$ $\ln |\sec u + \tan u| + C$ 13. $\int \csc u \, du =$ $-\ln|\csc u + \cot u| + C$ 14. $\int \sec^2 u \, du = \tan u + C$ $15. \int \csc^2 u \, du = -\cot u + C$ 16. $\int \sec u \tan u \, du = \sec u + C$ 17. $\int \csc u \cot u \, du = -\csc u + C$ 18. $\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$ 19. $\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$ 20. $\int \frac{du}{u \sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$

Example 1 – A Comparison of Three Similar Integrals

Find each integral.

a.
$$\int \frac{4}{x^2 + 9} \, dx$$

b.
$$\int \frac{4x}{x^2 + 9} \, dx$$

$$\mathbf{c.} \quad \int \frac{4x^2}{x^2 + 9} \, dx$$

Example 1(a) – Solution

Use the Arctangent Rule and let u = x and a = 3.

$$\int \frac{4}{x^2 + 9} dx = 4 \int \frac{1}{x^2 + 3^2} dx$$
 Constant Multiple Rule

$$= 4\left(\frac{1}{3}\arctan\frac{x}{3}\right) + C$$
 Arctangent Rule

$$=\frac{4}{3}\arctan\frac{x}{3}+C$$
 Simplify.

Example 1(b) – Solution

The Arctangent Rule does not apply because the numerator contains a factor of *x*.

Consider the Log Rule and let $u = x^2 + 9$. Then du = 2xdx, and you have

$$\int \frac{4x}{x^2 + 9} dx = 2 \int \frac{2x \, dx}{x^2 + 9}$$
Constant Multiple Rule

$$= 2 \int \frac{du}{u}$$
Substitution: $u = x^2 + 9$

$$= 2 \ln|u| + C$$
Log Rule

$$= 2 \ln(x^2 + 9) + C.$$
Rewrite as a function of x.

cont'd

Example 1(c) – Solution

Because the degree of the numerator is equal to the degree of the denominator, you should first use division to rewrite the improper rational function as the sum of a polynomial and a proper rational function.

$$\int \frac{4x^2}{x^2 + 9} dx = \int \left(4 - \frac{36}{x^2 + 9}\right) dx$$
Rewrite using long division.

$$= \int 4 dx - 36 \int \frac{1}{x^2 + 9} dx$$
Write as two integrals.

$$= 4x - 36 \left(\frac{1}{3} \arctan \frac{x}{3}\right) + C$$
Integrate.

$$= 4x - 12 \arctan \frac{x}{3} + C$$
Simplify.

cont'd

Fitting Integrands to Basic Integration Rules

PROCEDURES FOR FITTING INTEGRANDS TO BASIC INTEGRATION RULES

Technique	Example
Expand (numerator).	$(1 + e^x)^2 = 1 + 2e^x + e^{2x}$
Separate numerator.	$\frac{1+x}{x^2+1} = \frac{1}{x^2+1} + \frac{x}{x^2+1}$
Complete the square.	$\frac{1}{\sqrt{2x-x^2}} = \frac{1}{\sqrt{1-(x-1)^2}}$
Divide improper rational function.	$\frac{x^2}{x^2+1} = 1 - \frac{1}{x^2+1}$
Add and subtract terms in numerator.	$\frac{2x}{x^2 + 2x + 1} = \frac{2x + 2 - 2}{x^2 + 2x + 1}$
	$=\frac{2x+2}{x^2+2x+1}-\frac{2}{(x+1)^2}$
Use trigonometric identities.	$\cot^2 x = \csc^2 x - 1$
Multiply and divide by Pythagorean conjugate.	$\frac{1}{1+\sin x} = \left(\frac{1}{1+\sin x}\right) \left(\frac{1-\sin x}{1-\sin x}\right)$
	$=\frac{1-\sin x}{1-\sin^2 x}$
	$=\frac{1-\sin x}{\cos^2 x}$
	$= \sec^2 x - \frac{\sin x}{\cos^2 x}$