Integration Techniques, L'Hôpital's Rule, and Improper Integrals

8.4 Trigonometric Substitution

Objectives

- Use trigonometric substitution to solve an integral.
- Use integrals to model and solve real-life applications.

Trigonometric Substitution

Trigonometric Substitution

You can ise trigonometric substitution to evaluate integrals involving the radicals

$$
\sqrt{a^{2}-u^{2}}, \quad \sqrt{a^{2}+u^{2}}, \quad \text { and } \quad \sqrt{u^{2}-a^{2}} .
$$

The objective with trigonometric substitution is to eliminate the radical in the integrand. You do this by using the Pythagorean identities

$$
\begin{aligned}
& \cos ^{2} \theta=1-\sin ^{2} \theta \\
& \sec ^{2} \theta=1+\tan ^{2} \theta \\
& \tan ^{2} \theta=\sec ^{2} \theta-1
\end{aligned}
$$

Trigonometric Substitution

For example, for $a>0$, let $u=\operatorname{asin} \theta$, where $-\pi / 2 \leq \theta \leq \pi / 2$.
Then

$$
\begin{aligned}
\sqrt{a^{2}-u^{2}} & =\sqrt{a^{2}-a^{2} \sin ^{2} \theta} \\
& =\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)} \\
& =\sqrt{a^{2} \cos ^{2} \theta} \\
& =a \cos \theta .
\end{aligned}
$$

Note that $\cos \theta \geq 0$, because $-\pi / 2 \leq \theta \leq \pi / 2$.

Trigonometric Substitution

Trigonometric Substitution (a>0)

1. For integrals involving $\sqrt{a^{2}-u^{2}}$, let

$$
u=a \sin \theta
$$

Then $\sqrt{a^{2}-u^{2}}=a \cos \theta$, where

$$
-\pi / 2 \leq \theta \leq \pi / 2
$$

2. For integrals involving $\sqrt{a^{2}+u^{2}}$, let

$$
u=a \tan \theta
$$

Then $\sqrt{a^{2}+u^{2}}=a \sec \theta$, where

$$
-\pi / 2<\theta<\pi / 2
$$

3. For integrals involving $\sqrt{u^{2}-a^{2}}$, let

$$
u=a \sec \theta
$$

Then

$$
\sqrt{u^{2}-a^{2}}=\left\{\begin{array}{l}
a \tan \theta \text { for } u>a, \text { where } 0 \leq \theta \leq \pi / 2 \\
-a \tan \theta \text { for } u<-a, \text { where } \pi / 2<\theta \leq \pi
\end{array}\right.
$$

Example 1 - Trigonometric Substitution: $u=a \sin \theta$

Find $\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}$.

Solution:

First, note that none of the basic integration rules applies.

To use trigonometric substitution, you should observe that $\sqrt{9-x^{2}}$ is of the form $\sqrt{a^{2}-u^{2}}$.

So, you can use the substitution

$$
x=a \sin \theta=3 \sin \theta
$$

Example 1 - Solution

Using differentiation and the triangle shown in Figure 8.6, you obtain

$$
d x=3 \cos \theta d \theta, \quad \sqrt{9-x^{2}}=3 \cos \theta, \quad \text { and } \quad x^{2}=9 \sin ^{2} \theta
$$

So, trigonometric substitution yields

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{9-x^{2}}} & =\int \frac{3 \cos \theta d \theta}{\left(9 \sin ^{2} \theta\right)(3 \cos \theta)} \\
& =\frac{1}{9} \int \frac{d \theta}{\sin ^{2} \theta} \\
& =\frac{1}{9} \int \csc ^{2} \theta d \theta \\
& =-\frac{1}{9} \cot \theta+C
\end{aligned}
$$

Substitute.

Simplify.

$\sin \theta=\frac{x}{3}, \cot \theta=\frac{\sqrt{9-x^{2}}}{x}$
Figure 8.6

Trigonometric identity

Apply Cosecant Rule.

Example 1 - Solution

$$
\begin{aligned}
& =-\frac{1}{9}\left(\frac{\sqrt{9-x^{2}}}{x}\right)+C \quad \text { Substitute for } \cot \theta \\
& =-\frac{\sqrt{9-x^{2}}}{9 x}+C
\end{aligned}
$$

Note that the triangle in Figure 8.6 can be used to convert the θ 's back to x 's, as follows.

$$
\begin{aligned}
\cot \theta & =\frac{\text { adj. }}{\text { opp. }} \\
& =\frac{\sqrt{9-x^{2}}}{x}
\end{aligned}
$$

Trigonometric Substitution

Trigonometric substitution can be used to evaluate the three integrals listed in the next theorem. These integrals will be encountered several times.

THEOREM 8.2 Special Integration Formulas (a>0)

1. $\int \sqrt{a^{2}-u^{2}} d u=\frac{1}{2}\left(a^{2} \arcsin \frac{u}{a}+u \sqrt{a^{2}-u^{2}}\right)+C$
2. $\int \sqrt{u^{2}-a^{2}} d u=\frac{1}{2}\left(u \sqrt{u^{2}-a^{2}}-a^{2} \ln \left|u+\sqrt{u^{2}-a^{2}}\right|\right)+C, \quad u>a$
3. $\int \sqrt{u^{2}+a^{2}} d u=\frac{1}{2}\left(u \sqrt{u^{2}+a^{2}}+a^{2} \ln \left|u+\sqrt{u^{2}+a^{2}}\right|\right)+C$

Applications

Example 5 - Finding Arc Length

Find the arc length of the graph of $f(x)=\frac{1}{2} x^{2}$ from $x=0$ to $x=1$ (see Figure 8.10).

The arc length of the curve from $(0,0)$ to $\left(1, \frac{1}{2}\right)$

Figure 8.10

Example 5 - Solution

Refer to the arc length formula.

$$
\begin{aligned}
s & =\int_{0}^{1} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x & & \text { Formula for arc length } \\
& =\int_{0}^{1} \sqrt{1+x^{2}} d x & & f^{\prime}(x)=x \\
& =\int_{0}^{\pi / 4} \sec ^{3} \theta d \theta & & \text { Let } a=1 \text { and } x=\tan \theta \\
& =\frac{1}{2}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{0}^{\pi / 4} & & \\
& =\frac{1}{2}[\sqrt{2}+\ln (\sqrt{2}+1)] & & \\
& \approx 1.148 & &
\end{aligned}
$$

